
LPmud

LPmud, a programmable multi user game.

Lars Pensj�o

lars@cd.chalmers.se

�

Pre-release, last update: 2-7-93

�

The text of this manual was taken from Lars' LPmud.texinfo and other �les written by Amylaar, Ardanna, Demos,

Macbeth, Marion and some unknown authors. This manual describes the tubmud driver, which is Amylaar's version of

the original gamedriver written by Lars and many others. Descriptions of parts of the tubmudlib have been added. This

document was crufted together by Foslay. Special thanks go to Bumblebee and Ignatios for T

E

Xnical advice.

1

CONTENTS 2

Contents

1 GENERAL 3

1 General

1.1 Idea of the game

LPmud is a multi user adventure game. That means that several players can be playing the game at the

same time, using the same object database. It also means that the players will meet each other, and a�ect

the game for other players.

1.2 History of LPmud

In the beginning, I

1

played a lot of Abermud and some Tinymud, and wanted to do something better,

combining the two systems. I made the �rst version of LPmud as some kind of argument, to show that my

ideas were possible. Luckily, I didn't know at that time how that would impact my near future.

1.3 Objects, �les and programs

The programs de�ning the behaviour of objects are stored in �les. Every object has exactly one �le de�ning

the program, but every �le may be used for more than one object. When an object that is not loaded

is referenced, it will automatically be compiled and loaded. More than one instance of an object can be

created using the function clone object() (See also section ??). The function �le name() returns a string

\�lename#number" for a cloned object and just \�lename" for the blueprint. When a blueprint has an

environment (is inside another object) it cannot be cloned any longer, this enforces the rule that a blueprint

is either an object in the game or a source of clones. clone object() should not be used if only one instance

of an object is wanted. Cloned objects may be con�gured di�erently after creation, hence enabling di�erent

behaviour.

1

Lars Pensj�o

2 FILE HIERARCHY IN TUBMUD 4

2 FileHierarchy in Tubmud

All �les which form the object database reside in the `mudlib'. The tubmudlib looks like this:

basic: Basic modules of the new tubmudlib (un�nished)

complex: Con�gurable objects of the new tubmudlib (un�nished)

global: New directory of global objects

secure: Security related objects

sys: System �les, include �les

lib: Library objects

obj: All 2.4.5 standard objects and more.

room: All standard 2.4.5 rooms, some include �le

domains: (See also section ??)

players: The castle of wizards reside here

save: Various save �les (for player objects etc.)

log: Various log �les

doc: Manual pages for functions, con�gurable objects etc.

open: Readable and writable for all wizards

std: Obsolete (taken from another new mudlib)

3 Installation and Setup

This chapter describes how to get LPmud running from scratch. It works for SUN SparcStation run-

ning SunOS 4.1.1, silicon graphic IRIS, Atari st/tt running MiNT and equipted with gcc/mintlibs/bash,

Commodore Amiga with DICE compiler, 80386/80486 machines running linux 0.98.5, DEC 5000/125 with

Ultrix 4.2 and Next. If you are using any other platform you may have some trouble getting the game up.

We don't have time or equipment needed for porting the game to other systems.

3.1 Getting LPmud Sources

LPmud can be retrieved with anonymous FTP from host alcazar.cd.chalmers.se, IP-number 129.16.79.30.

Log on as ftp, and give your email address as password.

The archive holding the source can be found in `/pub/lpmud', and is called `LPmud-3.1.2.tar.Z'. It is a

binary �le, which means that you have to set FTP in binary mode.

This is how a ftp session might look:

% ftp alcazar.cd.chalmers.se

Connected to alcazar.

220 alcazar FTP server (Version 5.53 Sun May 27 01:43:44 MET DST 1990) ready.

Name (alcazar.cd.chalmers.se:arne): ftp

331 Guest login ok, send ident as password.

Password: arne@cd.stanford.edu

230 Guest login ok, access restrictions apply.

ftp> cd pub/lpmud

250 CWD command successful.

ftp> bin

200 Type set to I.

ftp> get LPmud-3.1.2.tar.Z

200 PORT command successful.

150 Opening BINARY mode data connection for LPmud-3.1.2.tar.Z (510193 bytes).

226 Transfer complete.

local: LPmud-3.1.2.tar.Z remote: LPmud-3.1.2.tar.Z

510193 bytes received in 1e-06 seconds (1.4e+06 Kbytes/s)

3 INSTALLATION AND SETUP 5

ftp> bye

221 Goodbye.

The tubmudlib, some other mudlibs and versions of the gamedriver can be found on ftp.cs.tu-berlin.de

(quepasa.cs.tu-berlin.de). Tubmud has its own ftp server (morgen.cs.tu-berlin 7681) which accepts your

wizard name and password if you are a wizard in tubmud, there is also a mtp server with port number

7682.

3.2 Contents of the Archive

The archive contains all you need to set up an LPmud on your host. However you need a mudlib. You

can write one yourself or get one by ftp. The software you got in this archive contains the preprocessor,

communication stu�, efuns and lots of other functions needed in the game. The other major part is what

we call `mudlib'. Everything accessible from within the game is in `mudlib', such as save �les, log �les and

LPC source code. The LPC source code is the code de�ning what your LPmud will be like. It is the game

itself, while the `game driver' is a tool for running the game. There are also some other things included in

the archive, among them documentation and some useful utilities.

This is what the directory structure in the archive looks like:

mud

README bin doc lib

src

swap

This is a description of what some of the directories are. (See also section ??), for more information on the

contents of the `lib' directory.

README A �le describing where to �nd the documentation.

bin Directory that will contain all the executables after installation.

doc All the documentation as a text �le, a texinfo �le and a PostScript �le.

lib The mudlib directory.

src The source code for the game driver.

src/util Source code for some utility programs and shell scripts.

swap When the game is running it creates a swap �le here.

3.3 Unpacking the Archive

When you unpack the source archive, a directory called `mud' will be created in your current directory. All

the �les in the archive will be put in the `mud' directory. Before unpacking the archive you should decide

where in the �lesystem you want to have the game and change directory to that location.

The archive is a compressed tar archive. To unpack it you need one of the commands uncompress or zcat

and the program tar, or gnu tar, which can do all the unpacking with gtar xzf <archive>.

Here is an example of how the archive can be unpacked:

% cd /usr/src/games

% zcat LPmud-3.0.22.tar.Z | tar xf -

3 INSTALLATION AND SETUP 6

3.4 Compiling the game driver

The �rst thing you have to do is to con�gure LPmud to suit your system. Change directory to `mud/src'.

Edit `config.h' and change any de�nes needed. They are well commented in the �le, but those that it is

likely that you want to change are explained here.

TIME TO SWAP Tells how long the game driver should wait before swapping out an unused

object. The time should be high if you have much memory.

TIME TO RESET Sets the intervall between calls to reset() in objects.

PORTNO This is the port number that the games uses. Before setting it, you should

ask your system manager what number to use.

DOMAINS If this is de�ned you enable domains, i.e. groups of wizards working together,

with a special domain directory for each group.

SWAP FILE Should be a full path to a �le used for swapping objects. It is typically set to

`mud/swap' as mentioned previously.

LOG SHOUT If LOG SHOUT is de�ned all shouting in the game is logged in a �le,

`mud/lib/log/SHOUTS'.

MAX PLAYERS The maximum number of simultaneous players in the game. The more pow-

erfull system you have, the higher should it be.

Next, you should edit the `Makefile' - you probably need to pick the appropriate one from hosts/* �rst

- and make changes suitable for your system. These are some of the parameters that you might want to

change.

MALLOC There are three di�erent versions of malloc to choose from. The `Makefile'

tells the di�erence between them.

CC What C compiler to use.

BINDIR Where to put all the executables. Typically set to `mud/bin'.

MUD LIB The path to mudlib. Usually set to `mud/lib'.

After editing `config.h' and `Makefile' you are ready to compile the game driver. Type

make

if the compilation is completed without errors, an executable �le `debug' should have been created.

3.5 Installing the Game

After compiling the game driver, several �les have to be installed in their proper places. If you have

changed the path for MUD LIB in the `Makefile' to something other than `mud/lib' in the directory where

you extracted the software, you have to move the contents of `mud/lib' to the new location. If you have

changed BINDIR in the `Makefile' or SWAP FILE in `config.h' to be other than those that were extracted,

you must make those directories in the new location. After doing that, give the command

make install

Now the game driver should be installed in BINDIR. We provide a shell script that restarts the game every

time it crashes or is shut down. It restarts the game at most 50 times. After that the script has to be

rerun. The script is called `restart mud' and is located in `mud/src/util'. To install it in BINDIR type

make install.restart mud

If you want the game to be restarted every time your computer is rebooted, ask your system manager to

run `restart mud' from `/etc/rc.local'. Here is an example of what to put in `/etc/rc.local'.

if [-f /usr/games/mud/bin/restart_mud]; then

/bin/su arne -c /usr/games/mud/bin/restart_mud 2>&/dev/null

echo `Starting LPmud'

fi

4 COMMANDS TIED TO FUNCTIONS IN OBJECTS 7

3.6 Starting the game

The simplest way of starting the game is to issue the command

parse

that after a successfull installation resides in `bin'. That command will start the game in 3.0 mode,

accepting connections on the port con�gured in `src/config.h'.

These are the command line options that are available:

-c Print a message to stdout every time a �le is compiled.

-d Debug information. Repetition increases verbosity.

-D De�ne a preprocessor macro for all LPC �les.

-e Start the game without loading any wizard or domain �les.

-f The string following the option is passed to master::
ag();

-m Set the mudlib directory, overriding the path in Make�le. There

must be no space after the 'm'

-M Set the path name of the master object inside the mudlib. If

not given, /obj/master is used for COMPAT MODE and /se-

cure/master for native mode.

-r Set the size of the reserved memory, overriding the value in

con�g.h

4 Commands tied to Functions in Objects

All commands except a very few special cases are de�ned by the objects. All commands have a simple

basic way to be recognized. The �rst word of the sentence is supposed to be the verb. Every command

de�ned is tied to a special function in an object. Commands are de�ned with the function add action(),

which speci�es the verb to be recognised, and the name of the local function to be called. (See also section

??). When a living object gives a command which matches a verb with a command de�ned by an object,

then the corresponding function will be called in the speci�ed object. If this function returns 0, then next

command with the same verb is tried. If the function returns 1, then the search is terminated. This

enables several objects to de�ne commands with the same verbs, but still behave di�erent if the rest of

the sentence di�ers. For example, there might be two armours. One is named leather jacket, and one is

named plate mail. Both objects will have de�ned a command with the verb wear. If the player now gives

the command `wear jacket', then we can't know which de�ned command is called �rst. Suppose that the

wear function in the plate mail is called �rst. It will then detect that the argument to wear is jacket,

not plate mail. It would then return 0, which would enable the game driver to call the command in the

leather jacket that de�nes the wear verb. This function would accept the command, and execute some

appropriate code, followed by a return of 1. Every time an object O comes in contact with a living object

L then O will be asked to de�ne commands. (See also section ??)

5 Call of clean up()

The function clean up() is automatically called now and then. When an object is loaded, it is checked for

existence of a function clean up(). If found, a
ag O WILL CLEAN UP is set. If an object hasn't been

used (any function called) for a certain time and O WILL CLEAN UP is set, then clean up() is called. If

this function returns a non-zero value, then O WILL CLEAN UP is set again (which means that clean up

can be called again).

O WILL CLEAN UP will also be set again after un-swapping of an object. This way, if the object gets

touched and the reason why clean up wasn't applicable may have vanished, the object is asked again what

to make of the changed situation.

6 HOW TO HANDLE WHEN A PLAYER ENTERS A BOX 8

The idea of clean up() is that objects can self-destruct, which is much more space e�ective that being

swapped out. It will also work for cloned objects.

It can be a good idea to de�ne a default clean up() in the \much used" room.c, which will destruct the

room when it is empty. If a wizard wants to save important rooms, he will have to rede�ne clean up().

It is of course possible to do other types of cleaning than destruction. The administrator has to de�ne time

until clean up in con�g.h. The time should be much longer than the time to reset().

6 How to handle when a player enters a box

Suppose there is a big box in the room, which makes it possible for players to enter. Players entering the

box should not be transfered into the inventory of the box, but rather into a new room, which represents

the interior of the box.

There is a speci�c reason for this. When a player arrives in the room with the box, the function init will

be called, which will de�ne the enter command. But, if the player would be transfered into the box, he

would again have an enter command de�ned. Similar problems exist for the short() and long() functions.

They should give di�erent messages depending on if the player is on the inside or the outside of the box.

7 LPC REFERENCE MANUAL 9

7 LPCReferenceManual

The language used to program objects is called LPC. It is syntactically modelled after C. As it is important

that objects be loadable \on the
y" in a game, I choose to make it an interpreted language. If it would

be compiled for real, there would be big problems of portability when moving to di�erent machines. The

security of the program is also very important. Under no circumstances should a LPC programmer crash

the game by doing a mistake. That rules out standard C.

Several ideas has been borrowed from object oriented languages, like inheritance. However, as performance

is very important, I have not hesitated to use \impure" language constructs when needed, which will con
ict

with the concepts of object oriented languages.

An LPC programs consists of several building blocks:

� inheritance speci�cation

� preprocessor

� variables

� functions

7.1 Type Declarations

Types can be used at four places:

1. Declaring type of global variables.

2. Declaring type of functions.

3. Declaring type of arguments to functions.

4. Declaring type of local variables to functions.

Normally, the type information is completely ignored, and can be regarded purely as documentation (the

internal representation di�ers, according to the type of the value assigned to a variable but type casting

is done automatically, if possible). However, when the basic type of a function is declared, then a more

strict type checking will be enforced. That means that the type of all arguments must be de�ned. And, the

variables can only be used to store values of the declared type. The function call other is de�ned to return

an unkown type, as the compiler can't know the type. This value must always be casted (when strict type

checking is enabled). Type unknown is only returned from call other.

Note that casting in LPC is not the same as casting in C. Initially it was only used as information for the

compiler, and could only be used to cast values of type unknown or mixed.

There are now two di�erent forms of type casting in lpc:

A real casting operator will be compiled if the casting syntax with `(' <type> `)' is used on a value that is

not \mixed" or \unknown". You can also explicitely use runtime type-casting with the to int() etc. efuns.

x = (f int g) y) merely re-declares the value to be an int while x = (int) y does \real" type casting for

all types except \unknown" and \mixed" which are just re-declared as with the �rst method, example:

(int *)"s" = (f 115, 0 g) .

A type declaration for a variable may include an initialization. If the gamedriver is con�gured to create

an INIT() function (this is done by de�ning INITIALIZATION BY INIT) efuns may be used to initialize

variables, in tubmud you may only use constant values, like that: int a = 42; If the constant value is an

array it will be shared between all clones of the object. (Note that operations which change the size of an

array create a new array).

7 LPC REFERENCE MANUAL 10

When a function is compiled with strict type testing, it can only call other functions that are de�ned. If

they are not yet de�ned, prototypes can be de�ned:

string func(int arg);

Note the `;' instead of a body to the function. All arguments must be given by names, but do not have to

have the same names as in the real de�nition. All types must of course be the same.

There are two kinds of types. Basic types, and special types. There can be at most one basic type, but any

number of special types. The strict type checking is only used by the compiler, not by the runtime. Hence,

it is actually possible to store a number in a string variable even when strict type checking is enabled.

Why use strict type checking? It is really recommended, because the compiler will �nd many errors at

compile time, which will save a lot of hard work. It is in general much harder to trace an error occuring at

run time. I recommend, that when a wizard is having problem with an object and wants help, that he �rst

must make all functions have declared types.

The basic types can be divided in to groups. Those that are referenced by value, and those that are

referenced by address. The types int and string are always representing di�erent entities. But the type

object is a pointer to an object. If a value of this type is assigned to a variable or passed as an argument,

both will point to the same object. The same goes for arrays and mappings, which implies that a change

to an element of an array changes all variables pointing to the same array. Changing the size of the array

will always allocate a new one, though. The comparation operator, ==, will compare the actual value for

the group of types above. But for arrays and objects, it will simply check if it is the same object (or array).

That has the very important implication that the expression `({x }) == ({x })' will always evaluate to

false. The array construction operator-pair ({}), if used to create an array of size zero, always returns the

same pointer.

7.2 Basic Types

All uninitialized variables have the value 0. A pointer to a destructed object will always have the value 0.

int An integer 32 bit number.

status Boolean, either 0 or 1 (same as int).

float A
oating point variable.

object Pointer to an object. An object pointer can mainly be used for two things.

Either giving as argument to functions, or used for calling functions de�ned

by that object with its speci�c instance of variables.

string An unlimited string of characters. A lot of operators are allowed for strings,

like + and [] etc.

mapping This type allows indexing with strings: value = map["index name"]; Please

note that an uninitialized mapping, like any other variable, contains an \in-

teger zero". Since 0["string"] = "something" is an invalid assignment a map-

ping must be initialized before usage. You can declare a mapping like that:

mapping map = ([]); Mappings cannot be initialized in declarations, except

for the empty mapping, as shown above. Mappings can be initialized like

that: m = (["key" : "value", "key2" : "value2"]);

mixed This type is special, in that it is valid to use in any context. Thus, if

everything was declared mixed, then the compiler would never complain.

This is of course not the idea. It is really only supposed to be used when a

variable really is going to contain di�erent types of values. This should be

avoided if possible. It is not good coding practice, to allow a function for

example to return di�erent types.

void This type is only usable for functions. It means that the function will not

return any value. The compiler will complain (when type checking is enabled)

if the return value is used.

7 LPC REFERENCE MANUAL 11

7.3 Arrays

Arrays are declared using a `*' with a basic type. For example, declaring an array of numbers: `int *arr;'.

Use the type mixed if you want an array of arrays, or a mixed combination of types.

Arrays can be allocated dynamically with the external function allocate().

Arrays are stored by reference, so all assignments of whole arrays will just copy the address. The array will

be deallocated when no variable points to it any longer, unless there is a circular reference, which should

be avoided.

When a variable points to an array, items can be accessed by indexing, e.g., arr[3]. The name of the array

being indexed can be any expression, even a function call, e.g. func()[2]. It can also be another array, if

it contains pointer to arrays :

arr = allocate(2);

arr[0] = allocate(3);

arr[1] = allocate(3);

Now arr[1][2] is a valid value.

The external function sizeof() (which is not a function in the C language) will give the number of elements

in an array.

Arrays can be constructed with a list inside `({' and `})'. E.g., when you write ({1, "xx", 2}), a new

array with size 3 will be constructed, its elements will be initialised with 1, "xx" and 2 respectively.

Partial arrays or strings can be cut out or inserted with the range operator a[n..n+x]. If the second index

is lower than the �rst the range is empty. The indices in ranges may exceed the boundaries of a string/array

without an error (they are adapted before indexing there, unlike in arr[a]). The size of an array or string

range doesn't have to �t the size of the destination, the assignment may change the size of the range and

thus of the whole string/array. You can prepend a < sign to denote counting from the end. The second

index of a range defaults to the size of the string or array (�1) and can be omitted. x[<3..], for example,

addresses the last three elements of x.

The operator - returns the �rst array excluding all members of the second array. The operator + concate-

nates two arrays and the operator & returns the set intersection of two arrays.

Using the `,' operator inside index brackets, whithout enclosing it by round brackets, is no longer allowed.

The `,' is reserved for new types of indexed data access.

7 LPC REFERENCE MANUAL 12

7.4 Type Modi�er

There are some special types, which can be given before the basic type. These special types can also be

combined. When using special type T before an inherit statement, all symbols de�ned by inheritance will

also get the special type T. The only special case is public{de�ned symbols, which can not be rede�ned as

private in a private inheritance statement.

varargs A function of this type can be called with a variable number of arguments.

Otherwise, the number of arguments is checked, and can generate an error.

private Can be given for both functions and variables. Functions that are private in

object A can not be called through call other from another object. And, they

are not accessible to any object that inherits A.

static This special type behaves di�erent for variables and functions. It is similar to

private for functions, in that they can not be called from other objects (even

though they may be called from an object that inherits A). static variables will

be neither saved nor restored when calling save object() or restore object().

public A function de�ned as public will always be accessible from other objects, even

if private inheritance is used.

nomask All symbols de�ned as nomask can not be rede�ned by inheritance or shadow-

ing (See also section ??). They can still be used and accessed as usual.

virtual This keyword is not implemented as of this writing. An object which is

inherited `virtual' can be inherited in several places in the inheritance tree

of an object and it will still be the same object with the same set of internal

variables. This keyword is meaningless for functions and variables.

There can only be one non-static variable for a given name in an object, others are silently converted to

static. This ensures a saner save object / restore object operation.

7.5 Access of data and programs in other objects

There is a function call other(), that can be used to call functions in other objects. All functions can

be called except those declared static or private. (See also section ??) There is another syntax that

will do the same thing: `ob->func(args)'. This will call function func in object ob. It is a much more

good-looking way to do it.

There has been a lot of questions why this syntax hasn't been used to allow for accessing variables in other

objects. There are some good reasons for that.

1. It con
icts with the idea of programming in an object-oriented way.

2. It makes the programming less structured, as there are more dependencies.

3. If a variable name is changed, code can be broken.

4. Sometimes, you don't even want to keep the variable at all any longer.

7.6 Comments and Preprocessor Commands

Comments are either enclosed in a /* */ pair or start with // and end with the end of the line.

Preprocessing happens before the compilation of a program, hence the name. Available preprocessor

commands are explained below.

7 LPC REFERENCE MANUAL 13

7.6.1 Macros

A macro is de�ned with the #define MACRO <value> command, it sets a macro MACRO to value <value>;

below the line of the de�nition you can use MACRO instead of <value> in the program code, example:

#define MACRO(x,y) (clone_object(x)->move(y)). Macro names are always in uppercase by convention.

Macro de�nitions can be split into several lines (just like strings) with the escape character n followed by

the newline character.

The command #undef MACRO erases the macro de�nition MACRO.

7.6.2 Conditionals

In a macro processor, a conditional is a command that allows a part of the program to be ignored dur-

ing compilation, on some conditions. In the C preprocessor, a conditional can test either an arithmetic

expression or whether a name is de�ned as a macro.

A conditional in the C preprocessor resembles in some ways an if statement in C, but it is important to

understand the di�erence between them. The condition in an if statement is tested during the execution

of your program. Its purpose is to allow your program to behave di�erently from run to run, depending

on the data it is operating on. The condition in a preprocessor conditional command is tested when your

program is compiled. Its purpose is to allow di�erent code to be included in the program depending on the

situation at the time of compilation.

The #ifdef and #ifndef commands just verify if the following macro is (un)de�ned, no matter what the

value of the macro is.

It is a good practise to put the expression of the matching #if as a comment behind the #else or #endif

in long or nested conditionals.

The following conditionals exist:

1. #if

2. #else

3. #endif

4. #ifdef

5. #ifndef

7.6.3 Unintended Grouping of Arithmetic

You may have noticed that in most macros each occurrence of a macro argument name has parentheses

around it. In addition, another pair of parentheses usually surrounds the entire macro de�nition. Here is

why it is best to write macros that way:

The operator-precedence rules (See also section ??) may change the meaning of a macro which is not

enclosed in brackets. A macro A(a,b) de�ned as a + b, if multiplied with c would turn into a + (b * c)

instead of (a + b) * c. A(a & b,c) would turn into a & (b + c) instead of (a & b) + c.

7.6.4 Swallowing the Semicolon

Often it is desirable to de�ne a macro that expands into a compound statement (which is enclosed in curly

brackets (See also section ??)).

Strictly speaking, the macro expands to a compound statement, which is a complete statement with no

need for a semicolon to end it. But it looks like a function call. So it minimizes confusion if you can use it

like a function call, writing a semicolon afterward, as in MACRO (x);

7 LPC REFERENCE MANUAL 14

But this can cause trouble before else statements, because the semicolon is actually a null statement. The

presence of two statements|the compound statement and a null statement|in between a if condition and

the else makes invalid C code.

The de�nition of a macro can be altered to solve this problem, using a `do ... while' statement:

do {...}while (0);

7.6.5 Including �les

The #include <file> command inserts the given �le in the position of the command. Include �les have

the extension .h by convention. #include "file" searches the �le in the directory of the including �le.

#include <file> searches the �le in the system include �les, which are `/sys/' and `/room/' in tubmud.

(The master object de�nes a function define include dirs which speci�es the system include �les (See

also section ??)).

7.7 Operators

These are the operators available in LPC. They are listed in the order of precedence (low priority �rst):

expr1 , expr2 Evaluate expr1 and then expr2 . The returned value is the result of expr2 .

The returned value of expr1 is thrown away.

var = expr Evaluate expr , and assign the value to var . The new value of var is the

result.

var += expr Assign the value of expr+var to var . This is equivalent to var = var + expr .

var -= expr ditto with -.

var &= expr ditto with &.

var |= expr ditto with |.

var ^= expr ditto with ^.

var <<= expr ditto with <<.

var >>= expr ditto with >>.

var *= expr ditto with *.

var %= expr ditto with %.

var /= expr ditto with /.

expr1 || expr2 The result is true if expr1 or expr2 is true. expr2 is not evaluated if expr1

was true.

expr1 && expr2 The result is true if expr1 and expr2 is true. expr2 is not evaluated if expr1

was false.

expr1 | expr2 The result is the bitwise `or' of expr1 and expr2 .

expr1 ^ expr2 The result is the bitwise `exclusive or' of expr1 and expr2 .

expr1 & exp2 The result is the bitwise `and' of expr1 and expr2 . It is also de�ned as a set

intersection on arrays.

expr1 == exp2 Comparison. Valid for strings and numbers.

expr1 != exp1 ditto.

expr1 > exp2 ditto.

expr1 >= exp2 ditto.

expr1 < exp2 ditto.

expr1 <= exp2 ditto.

expr1 << exp2 Shift expr1 left expr2 bits.

expr1 >> exp2 Shift expr1 right expr2 bits.

expr1 + exp2 Add expr1 and expr2 . If numbers, then arithmetic addition is used. If one

of the expressions is a string, then that string is concatenated with the other

value as a string. Two arrays can also be concatenated.

expr1 - exp2 Subtract expr2 from expr1 (int,
oat or arrays only).

expr1 * exp2 Multiply expr1 with expr2 , yields type
oat if one or both operands are of

type
oat.

7 LPC REFERENCE MANUAL 15

expr1 % exp2 The modulo operator of numeric arguments.

expr1 / exp2 Division, yields type
oat if one or both operands are of that type.

++ var Increment the value of variable var , and return the new value.

-- var Decrement the value of variable var , and return the new value.

- expr Compute the negative value of var .

! expr Compute the logical `not' of an integer.

~ expr The boolean `not' of an integer.

var ++ Increment the value of variable var , and return the old value.

var -- Decrement the value of variable var , and return the old value.

expr1[expr2] The array given by expr1 is indexed by expr2 .

expr1->name(...) expr1 gives either an object or a string which is converted to an object, and

calls the function name in this object.

(expr) Expressions can be enclosed in parentheses to bypass the opererator prece-

dence and thereby to change the order of evaluation.

7.8 Statements

Variables, functions or variables and/or functions combined by operands form expressions. A statement is

an expression followed by a semicolon.

7.9 Conditions

The if-else statement is used to select a statement depending on the value of an expression; statement1 is

executed when expr is non-zero otherwise statement2 is executed (if it wasn't omitted):

if (expr)

statement1;

else

statement2;

Instead of:

if (n == n1)

statement1;

else if (n == n2)

statement2;

else if (n == n3)

statement3;

else

statement4;

you can use the following statement:

switch(n) {

case n1:

statement1; break;

case n2:

statement2; break;

case n3:

statement3; break;

default:

statement4; break;

}

You may also use a range n..n+k or 'A'..'Z' behind a case.

7 LPC REFERENCE MANUAL 16

7.10 Blocks

A block is a group of statements enclosed in curly brackets, which form a new statement; local variables

can be de�ned in a block:

if (b >= 0)

{

int a;

a = random(5);

a += b;

write("Result: " + a + ", " + b + "\n");

}

Note: Currently, the local variables are visible until the end of the function. This is di�erent

to C and will be �xed later (any year ;-)

7.11 Loops

The do{while loop takes the form

do {statement;} while (expr);

Its purpose is to execute statement until expr evaluates to 0.

The while loop takes the form

while (expr) statement;

While expr evaluates to a non-zero value, statement will be executed.

The for statement takes the from

for (expr1; expr2; expr3) statement;

Execute expr1 once. Then, while expr2 has a non-zero value, execute statement. Every time statement has

been executed, or a continue statement has been executed, execute expr3 before next loop.

Note: In all loops a break command in the statement will terminate the loop and a continue

command will continue the execution from the beginning of the loop.

7.12 Functions

The head of a function de�nition consists of the (optional) return type, the function name and a list of

arguments. The body is a block in which the arguments are local variables:

static string

my_function (int is_a_player, object somebody)

{

string desc;

if (is_a_player)

desc = somebody->query_name();

else

desc = somebody->short();

return desc;

}

7 LPC REFERENCE MANUAL 17

A locally de�ned function can have any number of arguments. All basic types can be sent in the argument.

A return value is sent with the `return' statement. All seven data types can be used in the return statement.

The type of the function must not be declared but if a basic type is declared strict type checking is enabled

in the body of the function.

Uninitialized arguments are set to 0.

Arguments which are pre�xed with & are passed \call-by-reference", which means that they \become" the

local variables in the called function, instead of merely initializing them. The di�erence is, of course, that

an assignment to the local variable also changes the associated variable of the calling function. If you want

to pass the member of an array by reference it has to be in parenthesis: &(a[n]).

The type of the arguments must not be declared when strict type checking is disabled. It is illegal to have

a function with the same name as a function in the same object, or local variable. Functions are reentrant.

If there is no return statement, the number 0 will be returned.

If a function has the type `static', then it will not be possible to call it with call other() from another

object.

There are two kinds of functions:

efun The hard coded functions, which are de�ned by the game driver. They can be rede-

�ned by a local function of the same name, which will then be used instead. Rede�ni-

tion of efuns and the de�niton of efuns which have been removed or are to be added

later is done in the �le `simul efun'. Functions de�ned in this object are available

to all other objects except the master object and except objects inherited by master

and/or the simul efun object.

lfun Functions that can be de�ned by objects. These functions will be called by other

lfuns, and sometimes by the game driver. They control the behaviour of an object.

An example is get(), which if de�ned and returning 1, will enable the object to be

picked up by players. If returning 0, then the player will get a message that says that

the object can't be picked up.

7.13 Saving and Restoring Objects

7.14 Inheritance

An object can inherit all variables and functions from another object. This is done with the declaration

inherit "�le";

This declaration must precede the declaration of any local variables or functions. When an inherited local

function fun is rede�ned, it can still be accessed with `::fun(...)'. The name of the module which contains

the function can pe prepended like that: door::open(). door may even be a string literal containing the

name of the module. An example, de�ning a monster:

inherit "obj/monster";

reset(arg) {

::reset(arg);

set_name("troll");

set_level(9); set_hp(100); set_wc(12); set_al(-60);

set_short("A troll");

set_long("It is a nasty troll that looks very aggressive.\n");

set_aggressive(1);

}

7.15 Shadowing

8 EXTERNAL FUNCTIONS (EFUN) 18

8 External Functions (efun)

The following efuns have no separate entries below and should be self explanatory: sin, cos, tan, asin, acos,

atan, exp, log, sqrt. The only argument and return type of these efuns is
oat.

8.1 add action

void add_action(fun,cmd,flag)

string fun,cmd;

int flag;

Set up a local function fun to be called when user input matches the command cmd. Functions called by a

player command will get the arguments as a string. It must then return 0, if it was the wrong command,

otherwise 1. If it was the wrong command, the parser will continue searching for another command, until

one returns true, or give an error message to the player.

For example, there can be a wand and a rod. Both of these objects de�nes add_verb("wave"). One of

them will be randomly called �rst, and it must look at the argument, and match against "wand" or "rod"

respectively.

If the second argument (cmd) is not given, it must be given by add verb(). The function add verb() is

still supported, because of historical reasons.

If argument flag is 1, then only the leading characters of the command have to match the verb cmd.

Always have add action() called only from an init() routine. The object that de�nes commands must

be present to the player, either being the player, being carried by the player, being the room around the

player, or being an object in the same room as the player. Never de�ne an action that will call the function

exit(), because it is a special function.

See also efun/query verb, efun/query actions, lfun/init, lfun/exit.

8.2 add verb

void add_verb(str)

string str;

This function is connected to the add action() function. It will set up the command str to trigger a call

to the function set up by the previous call to add action().

This function is now obsolete as the verb can be given directly as a second parameter when the function

add_action() is called. add verb() remains for compatibility.

See also efun/add action, efun/query verb.

8.3 add worth

void add_worth();

Used by the shop to update the wizlist. Has argument(s). May not be called if creator() is non-zero. This

efun should be considered obsolete, and is to be replaced with a simul efun.

8.4 add xverb

void add_xverb(str)

string str;

Same as add verb() but only the leading characters of the command have to match str. This function

di�ers from add action with three parameters because the string which is passed to the function (which

has been added by add action("function")) is the remainder of the commandline while add action(,,1)

removes the �rst word of the command line and the added verb just has to match the beginning of this

word. query verb always returns the �rst word, not the added verb.

See also: efun/add action, efun/add verb.

8 EXTERNAL FUNCTIONS (EFUN) 19

8.5 all environment

This function is de�ned

in =obj=simul efun:c

object *all_environment(ob)

object ob;

Gives an array of all containers which an object is in, i.e. for match in matchbox in bigbox in chest in room

all environment(match) would return ({matchbox, bigbox, chest, room })

8.6 all inventory

object *all_inventory(ob)

object ob;

Returns an array of the objects contained in the inventory of ob.

See also: efun/�rst inventory, efun/next inventory.

8.7 allocate

mixed *allocate(size)

int size;

Allocate an array of size elements. The number of elements must be non-negative and it must not be

bigger than the system maximum (1000 by default; 3000 in tubmub, as of this writing).

See also efun/sizeof.

8.8 assoc

mixed *assoc(key,keys,data_or_fail,fail)

mixed key,*keys,*data_or_fail,fail;

Searches a key in an alist.

Three modes of calling:

1. With exactly two arguments, the second being an array which's �rst element is no array. In this case

the entire array is searched for the key; -1 is returned if not found, else the index (like member_array,

but faster).

2. With two or three arguments, the second being an array which's �rst element is an array. The array

has to have a second element of the same size; the key is searched in the �rst and the associated

element of the second array that is element of second argument is returned if succesful; if not, 0 is

returned, or the third argument, if given.

3. With three or four arguments, the second being an array of keys (�rst element no array) and the

second is a matching data array. returns 0 or fourth argument (if given) for failure, or the matching

entry in the array given as third argument for success.

Complexity : O(lg(n)) , where n is the number of keys. Return value is unde�ned if another list is given

in place of a presorted key list.

See also: LPC/alists order alist insert alist

8.9 break string

This function is de�ned

in =obj=simul efun:c

string break_string(str,width,indent)

string str;

int width,indent;

Breaks a continous string without newlines into a string with newlines inserted at regular intervalls replacing

spaces. Each newline separated string can be indented with a given number of spaces.

8 EXTERNAL FUNCTIONS (EFUN) 20

8.10 caller stack

This function is not

yet implemented

object *caller_stack()

Return a list of all previous objects.

See also: previous object, caller stack depth.

8.11 caller stack depth

int caller_stack_depth();

Returns the depth (size) of the caller stack.

See also: previous object, caller stack.

8.12 call other

unknown call_other(ob,str,arg)

object ob;

string str;

Call a function in another object with one or more arguments. The return value from the function of

the other object is returned. The type of the returned variable is unde�ned, when strict type checking is

enabled type casting must be used with every call other.

Note: The return type is really unknown. This matters when type checking is enabled; the return value

has to be casted in this case: value = (<type_name>) call_other(...);.

See also efun/present, efun/�nd living.

8.13 call out

void call_out(fun,delay,arg)

string fun;

int delay;

Set up a call of function fun in this_object(). The call will take place in delay seconds, with the

argument arg provided. arg can be of any type. call_out can go to static functions.

See also efun/remove call out.

8.14 call out info

mixed *call_out_info()

Get information about all pending call outs. An array is returned, where every item in the array consists

of 4 elements:

1. The object

2. The function

3. The delay to go

4. The optional argument

See also: call out, remove call out.

8 EXTERNAL FUNCTIONS (EFUN) 21

8.15 call resolved

int call_resolved(&result,ob,func,arg1)

mixed result,ob,arg1;

string func;

This function is similar to call other. Returns 1 if the functions exists, 0 otherwise. The return value is

stored in result. Note that call resolved calls functions which are de�ned in shadows (like call other) while

function exists ignores shadows. The �rst argument result has to be passed as a reference (pre�xed with a

&); it will be overwritten if the function exists and left unchanged otherwise.

See also efun/function exists, efun/call other.

8.16 capitalize

string capitalize(str)

string str;

Convert the �rst character in str to upper case, and return the new string.

8.17 cat

int cat(path,start,num)

string path;

int start,num;

List the �le found at path. It is not legal to have periods or spaces in the path. This command is normally

connected to the cat command that wizards have. It is also used by the help command. The optional

arguments start and num specify the number of the �rst line and the number of lines to print. If they are

not given, the whole �le is printed from the beginning.

The total number lines will not exceed a system limit, which is normally set to 40 lines.

cat() returns 1 if success, 0 if no such �le or no such lines.

See also efun/ls, efun/�le size.

8.18 catch

mixed catch(expr)

Evaluate expr. If there is no error, 0 is returned. If there is a standard error, a string (with a leading `*')

will be returned.

The function throw(value) can also be used to immediately return any value, except 0.

The catch() is somewhat costly, and should not be used everywhere. Rather use it at places where an

error would destroy consistency.

8.19 cindent

void cindent(file)

string file;

This function is rumoured to run an external C beauti�er over file. Use at your own risk ;) The external

program is not installed in tubmud but the \I" command of ed can be used instead.

8.20 clear bit

string clear_bit(str,n)

string str;

int n;

Return the new string where bit n is cleared in string str. Note that the old string str is not modi�ed.

See also efun/set bit, efun/test bit.

8 EXTERNAL FUNCTIONS (EFUN) 22

8.21 clone object

object clone_object(name)

string name;

Load a new object from de�nition name, and give it a new unique name. Return the new object. (The

original used for cloning should not be used in the game. It should only be used for cloning.) Objects

which are to be used as blueprints may not have an environment.

See also efun/destruct, efun/move object, efun/clonep.

8.22 clonep

This function is de�ned

in =obj=simul efun:c

void clonep(ob)

object ob;

Return 1 if ob is a cloned object. The argument is optional and defaults to this object().

See also efun/stringp, efun/intp, efun/
oatp, efun/pointerp.

8.23 command

int command(str,ob)

string str;

object ob;

Execute str as a command given directly by the player. Any e�ects of the command will apply to the

current object. If the second optional argument is present, then the command is executed for that object.

The return value is the evaluation cost (0 on failure).

Note: the evaluation cost returned may be wrong if command() is used from inside a catch().

See also efun/enable commands.

8.24 create wizard

This function is de�ned

in =obj=simul efun:c

string create_wizard(name,domain)

string name,domain;

Create the environment and castle for a wizard. Do not use this if you are not sure about what you are

doing! It will create a new directory for the wizard with the name `name', and copy a de�nition of a castle

to this directory. It will also set up automatic loading of this castle for the start of the game.

It returns the name of the new castle. In case of error, false is returned.

8.25 creator

string creator(ob)

object ob;

Return as a string the name of the wizard that created object ob. If the object was not created by a

wizard, 0 is returned.

8.26 creator �le

This function is de�ned

in =obj=simul efun:c

string creator_file(str)

string str;

creator �le takes a �le name as its argument and derives the name of the wizard/domain that created it.

Example: creator_file("/players/macbeth/castle") == "macbeth"

creator_file("/domains/banking/rcs/shop") == "Banking"

creator_file("/open/test") == "/nil/"

creator_file("/obj/player") == 1 /* mudlib backbone */

8 EXTERNAL FUNCTIONS (EFUN) 23

creator_file("/ftp/test") == 0 /* can't be loaded or cloned */

Please note that the leading slash isn't obligatory, i.e.

creator_file("/"+file) == creator_file(file);

8.27 crypt

string crypt(str,seed);

Crypt the string str using two characters from seed as a seed. If seed is 0, then a random seed is used.

The result has the �rst two characters as the seed.

8.28 ctime

string ctime(clock)

int clock;

Give a nice string with current date and time, with the argument clock that is the number of seconds

since 1970.

See also efun/time.

8.29 debug info

void debug_info(flag,arg)

int flag;

mixed arg;

Gives some debug information depending on flag. Flag may currently be 0, 1 or 2, in the �rst two cases

arg has to be an object. (case 2: get object from speci�ed object list pos)

8.30 deep inventory

This function is de�ned

in =obj=simul efun:c

object *deep_inventory(ob)

object ob;

Recursivly collects the contents of an object and all objects inside it.

8.31 destruct

void destruct(ob)

object ob;

Completely destroy and remove object ob. The argument can also be a string. After the call to destruct(),

no global variables will exist any longer, only local, and arguments.

The master object of tubmud calls notify_destruct in the object to be destructed and notify_leave in

the environment of the object.

There are few things guranteed for destruct:

� All references to the object will be 0, including this object() in the destructed object itself.

� If an object selfdestructs, it's executing function is NOT terminated as in former versions.

� If an object is destructed and a call in a function of this object returns, it will be executed. This

means: if A calls a function in B, which destructs A and returns, the function calling B will continue

execution (in A).

� The values of global object variables may vanish.

� The destructed object fails to call other objects. (!)

8 EXTERNAL FUNCTIONS (EFUN) 24

� Everything pending on call out and input to will be cleared.

� A destruct is not reversible (unless the delinquent was the master and its successor can't be loaded

:-)

� If someone carried the object that was destructed, his local weight will be updated, if master.c chooses

to do so.

The update of weight happens in `/obj/master::prepare destruct()'. There won't be an update of

weight in native mode.

See also efun/clone object.

8.32 disable commands

void disable_commands()

Reverses enable commands().

8.33 dump array

This function is de�ned

in =obj=simul efun:c

void dump_array(var)

mixed var;

Dumps a variable with write() for debugging purposes.

8.34 ed

int ed(file,exithandler)

string file,exithandler;

This is a funny function. It will start a local editor on an optional �le. This editor is almost `ed' compatible.

The optinal second parameter de�nes a function to be called upon exiting ed.

8.35 enable commands

void enable_commands()

Enable this object to use commands normally accessible to players. This also marks the current object as

`living'. Commands de�ned by player.c will not be accessible, of course.

This function must be called if the object is supposed to interact with other players.

Avoid to call this function from other places than reset(), because the command_giver will be set to this

object, this means that this_player() will return the object which called enable commands until the end

of the execution.

See also efun/command, efun/living, efun/disable commands.

8.36 environment

object environment(obj)

object obj;

Return the surrounding object to obj. If no argument is given, it returns the surrounding to the current

object.

See also efun/�rst inventory, efun/this player, efun/this object.

8.37 exclude array

This function is de�ned

in =obj=simul efun:c

mixed *exclude_array(arr,from,to)

mixed *arr;

int from,to;

Deletes a section of an array.

8 EXTERNAL FUNCTIONS (EFUN) 25

8.38 exclude element

This function is de�ned

in =obj=simul efun:c

mixed *exclude_element(arr,index)

mixed *arr;

int index;

Deletes an element from an array.

8.39 exec

void exec(new,old)

object new,old;

This function replaces the player object of an interactive player with another object, preferably a player

object.

8.40 explode

mixed explode(str,del)

string str,del;

Return an array of strings, created when the string str is splitted into substrings as divided by del. The

str must end with del if the last part is wanted too.

Example: explode(str," ") will split the string str into an array of words as separated by spaces in the

original string. The array is returned.

In tubmud implode(explode(str,del),del) is the same as str and if del is "" the string is splitted into

single-char-strings.

You can have the old behaviour when you de�ne OLD EXPLODE BEHAVIOUR in con�g.h. It stripped

o� all empty strings at the beginning of the returned array and at most one at its end.

See also efun/sscanf, efun/extract.

8.41 export uid

This function is de�ned

in native mode only

void export_uid(ob)

object ob;

Set the uid of object ob to this object()'s e�ective uid. It is only possible when object ob has an e�ective

uid of 0.

See also efun/seteuid efun/getuid

8.42 extract

string extract(str,from,to)

string str;

int from,to;

Extract a substring from a string. Character 0 is the �rst character. extract(str,n) will return a

substring from characer number `n' to the end. extract(str,i,j) will return a string from character `i'

to character `j'. Indexes may be greater than the string length; they will be reduced automagically.

Extract will now accept array, too.

See also efun/sscanf, efun/explode.

8.43 �le name

string file_name(ob)

object ob;

Get the �le name of an object. If the object is a cloned object, then it will not have any corresponding �le

name, but rather a new name based on the original �le name.

Example: find object(file name(ob))==ob is guaranteed to be true for all objects ob.

See also efun/program name, efun/�nd object.

8 EXTERNAL FUNCTIONS (EFUN) 26

8.44 �le size

int file_size(file)

string file;

Give the size of a �le. Size �1 indicates that the �le either does not exist, or that it is not readable by

you. Size �2 indicates that it is a directory.

See also efun/save object, efun/load object, efun/write �le, efun/cat.

8.45 �le time

This function is de�ned

in =obj=simul efun:c

int file_time(file)

string file;

Return the date of the last write access to the �le in seconds since 1970.

See also efun/time, efun/ctime

8.46 �lter array

mixed *filter_array(arr,fun,ob,extra)

mixed *arr;

string fun;

object ob;

mixed extra;

Returns an array holding the items of arr �ltered through `ob->fun()'. The function fun in ob is called

for each element in arr with that element as parameter. A second parameter extra is sent in each call if

given. If `ob->fun(arr[.index.], extra)' returns non-zero the element is included in the returned array.

If arr is not an array, then 0 will be returned.

The last two arguments are optional, ob defaults to this object.

See also efun/map array.

8.47 �lter mapping

mapping filter_mapping(map,fun,ob,extra)

mapping *map;

string fun;

object ob;

mixed extra;

Similar to �lter array but takes a mapping instead of an array.

8.48 �lter objects

object *filter_objects(arr,fun,extra)

object *arr;

string fun;

mixed extra;

Similar to �lter array but calls arr[n]->fun(extra). If the call returns non-zero the object arr[n] is

included in the returned array. You can give an arbitrary number of arguments to pass to fun after fun.

Note: filter objects has been the original name for filter array which was renamed when the other

* array functions were implemented. This is no longer an alias for filter array!

8 EXTERNAL FUNCTIONS (EFUN) 27

8.49 �nd living

object find_living(str)

string str;

Find �rst `living' object named str. The id() function is not used, only the `living name' is recognised.

A living object is an object that has done enable_commands(). The object must have set a name with

set_living_name(). There is a special hash table that speeds up the search for living objects.

See also efun/�nd player, efun/enable commands, efun/set living name.

8.50 �nd object

object find_object(str)

string str;

Find an object with the �le name str. If the �le isn't loaded, it will not be found.

8.51 �nd player

object find_player(str)

string str;

Find a player with the name str. The string must be lowercase. Players are found even if they are invisible

or link dead. Monsters are not found.

This function uses the name that was set by set living name(). This is done automatically in player.c.

See also efun/�nd living, efun/set living name.

8.52 �rst inventory

object first_inventory(ob)

object ob;

Get the �rst object in the inventory of ob.

See also efun/next inventory.

8.53
oatp

int floatp(arg)

mixed arg;

Return 1 if arg is a
oating point value.

See also clonep, stringp, pointerp, objectp, referencep, mappingp, intp.

8.54 function exists

string function_exists(str,ob)

string ob;

object ob;

Return the �le name of the object that de�nes the function str in object ob. The returned value can be

other than `file name(ob)' if the function is de�ned by an inherited object. 0 is returned if the function

was not de�ned.

Shadows are ignored by function exists.

See also efun/call_resolved.

8 EXTERNAL FUNCTIONS (EFUN) 28

8.55 get dir

string *get_dir(path,mask)

string path;

int mask;

Return the directory speci�ed by path; accepts wildcards. the (optional) second parameter is a bit mask:

1 return name

2 return size

4 return date

8 reserved for data

16 reserved for data

32 give unsorted output

64 reserved for array format

128 reserved for array format

A
at array is returned, no matter which bits are set in the mask. With all bits set the array would look

like this: (f �le1, size1, date1, �le2 ... g)

8.56 get error �le

string get_error_file(name,flag)

string name;

int flag;

Returns the �le where a compilation error occured. If the
ag is set the error will be forgotten.

8.57 get extra wizinfo

wizinfo get_extra_wizinfo(wiz)

mixed wiz;

Get the extra wizinfo �eld for wiz. wiz may be a string denoting the name of a wizard, or an object

created by the wizard. Arrays are not copied. The call causes a privilege violation. (See also section ??)

See also efun/set extra wizinfo.

8.58 getuid

This function is de�ned

in native mode only

string getuid(ob)

object ob;

Get the name of the wizard that is set to the user of this object. That name is also the name used in the

wizlist.

See also efun/seteuid.

8.59 heart beat info

object *heart_beat_info()

Return an array with all objects which have a heart beat running.

8.60 implode

string implode(arr,del)

Concatenate all strings found in the array arr with the string del between each element. Only strings are

used from the array.

See also efun/explode.

8 EXTERNAL FUNCTIONS (EFUN) 29

8.61 inherit list

string *inherit_list(ob);

object ob;

Return a list of �lenames of objects inherited by ob. The object itself is in slot 0 of the returned array.

See also: efun/replace program

8.62 input to

void input_to(fun,flag)

string fun;

int flag;

Enable next line of user input to be sent to the local function fun as an argument. The input line will not

be parsed.

Note that fun is not called immediately. It will not be called until the current execution has terminated,

and the player has given a new command.

If input to() is called more than once in the same execution, only the �rst call has any e�ect.

If optional argument flag is non-zero, the line given by the player will not be echoed, and is not seen if

snooped.

See also efun/call other, efun/sscanf.

8.63 insert alist

mixed insert_alist(key,data_or_key_list,...,alist)

mixed key,data_or_key_list,*alist;

inserts an entry into an alist, or shows the place where this is to be done.

� When called with the last argument being an alist: The �rst argument is a key to be inserted, the

second and all the following but the last are data to associate it with. The last has to be an array

with as much elements as key and data arguments are given, the matching key and data arrays; this

should be already an alist, or the return value will neither be an alist. Return value is the enlarged

assoc list (array of two arrays). If the key is already in the list, the data is simply replaced in the

returned list.

� When called with the last argument beinig a list of non-lists: The call has to be done with exactly

two arguments. The �rst argument is a key to be inserted in the presorted key list (�rst element of

an array that is an alist) that has to be given as second argument. Return value is the index where

the key has to be inserted to preserve the structure of a presorted alist, or the index where the key

has been found. Return value is an int.

CAVEATS: when called with certain string keys, the correct place might change after another call

to insert alist in this mode, so use the index while it is fresh.

Complexity O(lg(n) + a � n) Where n is the number of keys and a is a very small constant (for block

move);

See also: LPC/alists efun/order alist efun/assoc efun/intersect_alist

8.64 intersect alist

mixed *intersect_alist(alist1,alist2)

mixed *alist1,*alist2;

Does a fast set intersection on alists.

8 EXTERNAL FUNCTIONS (EFUN) 30

8.65 intp

int intp(arg)

mixed arg;

Return 1 if arg is an integer number.

See also clonep, stringp, pointerp, objectp, referencep, mappingp,
oatp.

8.66 interactive

int interactive(ob)

object ob;

Return true if ob is interactive.

8.67 living

int living(ob)

object ob;

Return true if ob is a living object (i.e., enable_commands() has been called by ob).

8.68 localcmd

This function is de�ned

in =obj=simul efun:c

void localcmd()

Prints all currently de�ned actions.

See also efun/add action.

8.69 load object

This function is de�ned

in =obj=simul efun:c

object load_object(filename);

string filename;

Loads �le filename and returns the object pointer.

8.70 log �le

This function is de�ned

in =obj=simul efun:c

void log_file(file,message)

string file;

string message;

Append a message to a log �le. All log �les are in the directory mudlib/log. `/log' is automatically

prepended to the �le name.

See also efun/write �le.

8.71 lower case

string lower_case(str)

string str;

Convert the all characters in str to lower case, and return the new string.

8.72 ls

This function is de�ned

in =obj=simul efun:c

void ls(path)

char path;

List �les in an optional path. It is not allowed to use periods or spaces in the path. This function is

normally connected to the ls command that wizards have.

See also efun/cat.

8 EXTERNAL FUNCTIONS (EFUN) 31

8.73 map array

mixed *map_array(arr,fun,ob,extra)

mixed *arr;

string fun;

object ob;

mixed extra;

Returns an array holding the items of arr mapped through `ob->fun()'. The function fun in ob is called

for each element in arr with that element as parameter. A second parameter extra is sent in each call if

given. Principal function:

foreach (index) arr[index] = ob->fun(arr[index],extra);

The value returned by `ob->fun(arr[.index.], extra)' replaces the existing element in the array. If arr

is not an array, then 0 will be returned.

The last two arguments are optional, ob defaults to this object.

See also efun/�lter array.

8.74 map mapping

mapping map_mapping(map,fun,ob,extra)

mapping map;

string fun;

object ob;

mixed extra;

Similar to map array but takes a mapping instead of an array.

8.75 map objects

object *map_objects(arr,fun,extra)

object *arr;

string fun;

mixed extra;

Similar to map array but calls arr[n]->fun(extra). The return value replaces the object in the returned

array. Can pass any number of arguments to fun like �lter objects() .

8.76 member

int member(arr,item)

mixed arr,item;

Takes an array, mapping or string as �rst argument. In case of mappings it returns 1 if item is a member

of the mapping, otherwise it returns the index of item in array.

See also efun/member array.

8.77 member array

int member_array(item,arr)

mixed item,*arr;

Returns the index of the �rst occurence of item in array arr. If not found, then -1 is returned. arr may

be a string if item is a single character 'c'.

See also efun/member.

8 EXTERNAL FUNCTIONS (EFUN) 32

8.78 m delete

mapping m_delete(map,index)

mapping map;

mixed index;

Remove the entry with index index from mapping map, and return the changed mapping. If the mapping

does not have an entry with index index, the �rst argument is returned.

See also mappingp, mkmapping, m indices, m values, m sizeof

8.79 m indices

mixed *m_indices(map)

mapping map;

Return an array containing the indices of mapping map.

See also: mappingp, mkmapping, m values, m delete, m sizeof

8.80 m sizeof

int m_sizeof(map)

mapping map;

Return the number of indices (or values) in mapping map. This function is obsolete (it is merely an alias

for sizeof() now).

See also: mappingp, mkmapping, m indices, m values, m delete

8.81 m values

mixed *m_values(map)

mapping map;

Return an array with the values of mapping map.

See also: mappingp, mkmapping, m indices, m delete, m sizeof

8.82 mappingp

int mappingp(arg)

mixed arg;

Return 1 if the argument arg is a mapping, or 0 if it is not.

See also intp, clonep, stringp, pointerp, objectp, referencep,
oatp, mkmapping, m indices, m values,

m delete, m sizeof

8.83 mapping contains

int mapping_contains(&result,map,key)

mapping map;

mixed key,

result;

Returns 1 if key is in map. result contains the value associated with the key. Note that a reference

to result has to be passed to mapping contains, that's what the & is good for. The result won't be

overwritten if the mapping doesn't contain a value for the index.

8 EXTERNAL FUNCTIONS (EFUN) 33

8.84 mkmapping

mapping mkmapping(arr1,arr2)

mixed *arr1,*arr2;

Return a mapping with indices from arr1 and values from codearr2. arr1[0] will index arr2[0], arr1[1]

will index arr2[1], etc. If the arrays are of unequal size, the mapping will only contain as much elements

as are in the smallest array.

See also: mappingp, m indices, m values, m delete, m sizeof

8.85 mkdir

int mkdir(file)

string file;

Create a directory file. Return 1 for success and 0 for failure.

8.86 move object

This function is de�ned

in =obj=simul efun:c

void move_object(item,dest)

object item,dest;

Move the object item to the object dest. Currently, both arguments can be strings. Usually, transfer()

should be used instead of move_object().

In native mode an object may only move itself.

When you call move object the call is intercepted by the simul efun move object which checks if your

request to move an object is accepted by the object's current environment, the new environment and

the object itself. The function prevent leave(ob,to) is called in the current environment (if it exits);

prevent enter(from,ob) is called in the new environment and prevent move(ob,to) is called in the

object itself, if one of them returns non-zero move object() will fail. The functions notify leave(ob,to),

notify move(from,to) & notify enter(from,ob) are called like their cousins when the object has been

moved. Errors in the notify functions will be caught (see efun/catch). When an object is destructed

notify leave is called in its environment (and notify destruct in the object itself).

See also efun/transfer, efun/�rst inventory, efun/this object, efun/this player, efun/catch.

8.87 next inventory

object next_inventory(ob)

object ob;

Get next object in the same inventory as ob.

Warning: If the object ob is moved by move object(), then next inventory() will return an object from

the new inventory.

See also efun/�rst inventory.

8.88 notify fail

void notify_fail(str)

string str;

Store str as the error message given instead of the default message `What ?'.

If notify fail() is called more than once, only the last call of will be used.

The idea of this function is to give better error messages instead of simply `What ?'.

8.89 objectp

int objectp(arg)

Return 1 if arg is an object.

See also intp, clonep, stringp, pointerp, referencep,
oatp, mappingp.

8 EXTERNAL FUNCTIONS (EFUN) 34

8.90 order alist

mixed *order_alist(keys,data,...)

mixed *keys,*data;

Creates an alist. Keys have to be of type integer, string or object. Types can be mixed.

Either takes an array containing keys, and others containing the associated data, where all arrays are to

be of the same length, or takes a single array that contains as �rst member the array of keys and has an

arbitrary number of other members containing data, each of wich has to be of the same length as the key

array. Returns an array holding the sorted key array and the data arrays; the same permutation that is

applied to the key array is applied to all data arrays.

Complexity is O(n � lg(n) � m), where n is the number of elements in the key array and m is the number

of data arrays + 1;

Note that the the dimensions of the arrays are used the other way than in lisp to allow for faster searching.

Global variables can be initialized with results from order alist()

See also LPC/alists, efun/insert alist, efun/assoc.

8.91 parse command

int parse_command(str,source,pattern,var1,var2...)

string str;

object source; =� Object or array holding objects �=

string pattern;

This function parses a command given in str against the pattern in pattern and returns 1 if it matches.

source is either an object or an array of objects. This is essentially a `hotted' sscanf() and it has a similar

syntax, although parse_command() works on word basis whereas sscanf() works on character basis.

str: The given command.

source: If this parameter is an array, it holds the accessible objects. If it is an object, it is the object from

which to recurse and create the list of accessible objects, normally

ob = environment(this player())

pattern: The parse pattern as list of words and formats with the following syntax:

`word' obligatory text (one word);

[word] optional text (one word);

/ alternative marker;

%o single item, object;

%l single living object;

%s any text (multiple words);

%w any word;

%p preposition;

%i any items;

%d number, 0 : : :1 or textual 0 : : :99.

An example parse pattern: " 'get' / 'take' %i " Items as in %o and %i can have many forms, some

examples:

apple, two apples, twenty�rst apple apples, all apples, all green apples, all green ones

varn: This is the list of result variables as in sscanf() One variable is needed for each %: : : The return

8 EXTERNAL FUNCTIONS (EFUN) 35

types for the di�erent %: : : are:

%o Returns an object.

%l Returns an object.

%s Returns a string of words.

%w Returns a string of one word.

%p The variable can hold a list of words in an array on func-

tion entry, or it can hold an empty variable. If an empty

variable was given it will contain a string afterwards. If

an array was given array[0] will be the matched word

afterwards.

%i Returns a special array of this form:

Element [0] (int) is the given numeric pre�x:

= 0: `all' or a plural form given

> 0: numeral given: two, three, four, : : :

< 0: order given: second, third, : : :

The elements [1] : : : [n] (object) are object pointers that

constitute a list of all possible objects that can match the

given %i. No choosing of `third' or such will take place.

%d Returns a number.

Example:

a=parse_command("take apple",environment(this_player()),

" 'get' / 'take' %i ",items);

8.92 pointerp

int pointerp(arg)

Return 1 if arg is an array.

See also intp, clonep, stringp, objectp, referencep,
oatp, mappingp.

8.93 present

object present(str,ob)

string str;

object ob;

If an object that identi�es to the name str is present, then return it. An object that wishes to identify as

str has to de�ne a function id that returns 1 if called with str as argument. By default str is searched in

the inventory and environment of this player(). The �rst argument may also be an object pointer (which

makes searching faster). If the second argument is given, search takes place only in its inventory and not

in its environment.

str can also be an object.

The object is searched for in the inventory of the current player, and in the inventory of the environment

of the current player.

A second optional argument ob is the enviroment where the search for the str is done. Normally

this player() is a good environment.

See also efun/move object, efun/environment.

8 EXTERNAL FUNCTIONS (EFUN) 36

8.94 previous object

object previous_object(depth)

int depth;

Returns an object pointer to the last object that called the current function, if any. If the optional

argument depth is supplied it scans back the trace by depth external calls. previous object(1) returns what

previous object() would have returned, if called by the previous object. Destructed objects are zero.

See also efun/call other, efun/call resolved, efun/caller stack, efun/caller stack depth.

8.95 printf

void printf(fmt,arg,...)

string fmt;

mixed arg;

(See also section ??)

8.96 process string

This function is going

to be removed

string process_string(str)

string str;

Returns a string where occurences of `@@function[:filename][|arg|arg]@@' are replaced the return

code of the speci�ed function. Note that process_string does not recurse over returned replacement values.

If a function returns another function description, that description will not be replaced. Note that both

object and arguments are optional.

Example (added after reading TMI docs :-)

"You are chased by @@query_name:/players/myself/orc@@ eastward."

is replaced by (if query_name in /players/myself/orc returns "Orc"):

"You are chased by Orc eastward."

8.97 program_name

This function is de�ned

in =obj=simul efun:c

string program_name(ob)

object ob;

program name takes an object and returns the �le name of the class it was cloned from or the �le name of

the object itself if it is a blueprint.

program name(load object(file)) == program name(clone object(file))

See also efun/load object, efun/clone object, efun/�le name.

8.98 program time

int program_time(ob)

object ob;

Returns the creation time of the program struct which belongs to object ob.

8 EXTERNAL FUNCTIONS (EFUN) 37

8.99 query actions

mixed *query_actions(ob,mask_or_verb)

mixed ob,mask_or_verb;

query actions takes either an object or a �lename as �rst argument and a bitmask or string as a second

argument. If the second argument is a string query_actions will return an array containing information

(see below) on the verb or zero if the living object ob cannot use the verb. If the second argument is

a bitmask query_actions will return a
at array containing information on all verbs added to ob. The

second argument is optional (default is the bitmask 1).

1 the verb

2 typ

4 short verb

8 object

16 function

typ is one of the values de�ned in `/sys/sent.h', which is a gamedriver include �le:

SENT PLAIN added with add action(fun,cmd);

SENT SHORT VERB added with add action(fun,cmd,1);

SENT NO SPACE added with add action(fun); add xverb(cmd);

SENT NO VERB just an add action(fun); without a verb

SENT MARKER internal, won't be in the returned array

8.100 query editing

int query editing(pl)

object pl;

Returns 1 if pl currently uses ed.

See also efun/query input pending.

8.101 query idle

int query_idle(ob)

object ob;

Query how many seconds a player object has been idle.

8.102 query imp port

int query_imp_port()

Returns the port number for incoming imps. (See also section ??)

See also efun/query mud port, efun/send imp.

8.103 query input pending

int query_input_pending(pl)

object pl;

Returns 1 if the gamedriver is waiting for input to from player pl.

See also efun/query editing, efun/input to.

8.104 query ip name

string query_ip_name(ob)

object ob;

Give the ip-name for player ob. An asynchronous process `hname' is used to �nd out these name in parallell.

If there are any failures to �nd the ip-name, then the ip-number is returned instead.

8 EXTERNAL FUNCTIONS (EFUN) 38

8.105 query ip number

string query_ip_number(ob)

object ob;

Give the ip-number for player ob.

See also: query ip name.

8.106 query is wizard

This function is de�ned

in =obj=simul efun:c

int query_is_wizard(ob)

object ob;

True if ob is a wizard.

8.107 query load average

string query_load_average()

Returns a string describing the performance of the driver.

8.108 query mud port

port query_mud_port()

See also efun/query imp port.

8.109 query once interactive

int query_once_interactive(ob)

object ob;

True if object ob is interactive or has been interactive once.

8.110 query verb

string query_verb()

Give the name of the current command, or 0 if not executing from a command. This enables add action()

of several commands to the same function.

See also efun/add action.

8.111 random

int random(n)

int n;

Return a random number in the range [0 : : :n� 1].

8.112 read bytes

string read_bytes(file,offset,number)

string file;

int offset,

number;

Returns the contents of the �le `�le', beginning at o�set offset, reading number bytes. There is a maximum

limit of bytes for reading. It is determined by the constant MAX BYTE TRANSFER (50k) in con�g.h.

See also: efun/�le size, efun/�le date, efun/write bytes

8 EXTERNAL FUNCTIONS (EFUN) 39

8.113 read �le

string read_file(file,offset,number)

string file;

int offset,

number;

Returns the contents of the �le `�le', beginning at o�set offset, reading number lines. There is a maximum

limit of bytes for reading. It is determined by the constant READ FILE MAX SIZE (50k) in con�g.h. If number

is -1 the maximum number of bytes will be read.

See also: efun/�le size, efun/�le date, efun/write bytes

8.114 referencep

int referencep(&ref)

mixed ref;

Returns true if ref is a reference. Note that there has to be a leading &. References behave just like other

local variables but if their value is changed the associated variable in the calling functions is changed, too.

referencep() gives no information about the actual type of the variable.

See also intp, clonep, stringp, objectp, pointerp,
oatp, mappingp.

8.115 regexp

string *regexp(list,pattern)

string *lists,pattern;

Match the pattern pattern against all strings in list, and return a new array with all strings that matched.

Special characters are:

. ^ $ & * ? < > { } |

See the manual page of the unix command egrep for more information.

8.116 remove call out

int remove_call_out(fun)

string fun;

Remove next pending call out for function fun in this object. The time left is returned. The number �1 is

returned if there was no call out pending to this function.

See also efun/call out.

8.117 remove interactive

void remove_interactive(ob);

object ob;

Removes an interactive object.

8.118 rename

int rename(from,to)

string from,

to;

The efun rename will move `from' to the new name `to'. If `from' is a �le, then `to' may be either a �le or

a directory. If `from' is a directory, then `to' has to be a directory. If `to' exists and is a directory, then

`from' will be placed in that directory and keep its original name.

It is only possible to change name of a directory within a directory on machines running System V, i.e it

is not possible to move it to another directory. It is not possible to move a directory across �lesystems on

any system.

8 EXTERNAL FUNCTIONS (EFUN) 40

8.119 replace program

void replace_program(name);

string name;

Substitutes a program with an inherited one. This is useful if you consider the performance of the driver.

A program which doesn't need any additional variables and functions (except during creation) can call

replace program to increase the function-cache hit-rate of the driver which decreases with the number of

programs in the game. Rooms are a good example for the application of this function, as many rooms

just consist of an inherit statement and the configure function. Any object can call replace program

but looses all extra variables and functions which are not de�ned by the inherited program. name is the

actual �lename of the program (without the path and without .c). The array returned by inherit list will

not contain the name of the program which used replace program, but the program which replaced it in

position 0. �le name will, however, still return the old �lename. This function will also reduce memory

requirements for the object.

8.120 restore object

int restore_object(name)

string name;

Restore values of variables for current object from �le name. It is illegal to have periods or spaces in the

name; `.o' is appended to the �lename. The function returns true if it was successful.

Variables that have the type modifer static will not change.

If inheritance is used, then it might be possible that a variable will exist with the same name in more than

one place. When restoring, only one of these variables will be restored if encountered in the save �le. A

good practice is to have verbose and unique name on non-static variables, which also will make it more

easy to read or patch the save �le manually. private variables which are not static will be overwritten.

restore object can restore recursive data structures. However, make sure to deallocate such structures by

hand lest permanent loss of memory may incurr.

See also efun/save object.

8.121 rm

int rm(file)

string file;

Remove �le file. Returns 0 for failure and 1 for success.

See also: mkdir, rmdir.

8.122 rmdir

int rmdir(dir)

string dir;

Remove directory dir.

See also: rm, mkdir.

8.123 rusage

void rusage()

This efun is linked to the unix function getrusage. The �rst entry will be the usertime im milliseconds and

the second will be the system time spent in milliseconds; the other entries are not supported by all systems.

(read the unix manpage for more information).

8 EXTERNAL FUNCTIONS (EFUN) 41

8.124 save object

void save_object(name)

string name;

Save values of variables of this object in the �le name. It is illegal to have periods or spaces in the �lename.

Wizards that call this function can only save to �les in their own directories.

Variables that have the type modifer static will not be saved.

Example: static int xxx;

Save �les escape all c++ special characters with a backslash. The new save �le format is denoted by a

leading line with a hash mark at the start and no spaces. The new �le format allows to save recursive data

structures; the use of circular structures is not suggested, however, since they occupy memory which can

only be regained by a reboot once the object which created them has been destructed.

See also efun/restore object.

8.125 say

void say(str,obj)

string str;

object obj;

Send a message str to all players in the same object (usually a room). This function is also used by the

say command.

If second argument obj speci�ed, messages is sent to all except obj.

This command behaves di�erently if called from a heart beat() or otherwise. When called from a

heart beat(), the message will reach all players in the same environment of the object that calls say().

If called from a living object (an object which called enable_commands()) the living object will be excluded

instead of this_player().

See also efun/write, efun/shout, efun/tell object, efun/tell_room, lfun/catch tell.

8.126 send imp

void send_imp(host,port,message)

string host,message;

int port;

Send an imp to the speci�ed host and port which carries the speci�ed message. Note that imps travel

slightly faster than internet packets even though the nasty little creatures are di�cult to tame. send imp

is a privilege violation. (See also section ??)

See also efun/query imp port.

8.127 set auto include string

void set_auto_include_string(s)

string s;

If called, the string s is prepended to every �le compiled after that. If there are errors within it, line

numbers will range from -n to 0. updating the master will clear the string. Thus it has to be called

from reset()/create()in the master and reactivate destructed master. maximum length for s is 25k.

calling it from outside thre master will cause a privilege violation.

8 EXTERNAL FUNCTIONS (EFUN) 42

8.128 set bit

string set_bit(str,n)

string str;

int n;

Return the new string where bit n is set in string str. Note that the old string str is not modi�ed and

the new string will automatically be extended if needed. Bits are packed 6 per byte in printable strings.

The maximum value of n is limited to MAX BITS (in con�g.h) In tubmud the limit is 1200 bits, 200 chars.

See also efun/clear bit, efun/test bit.

8.129 set extra wizinfo

void set_extra_wizinfo(wiz,value)

mixed wiz,value;

Set the wizinfo entry for wiz, which can be a name or object pointer. Note that arrays are not copied;

the call causes a privilege violation. (See also section ??) set extra wizinfo can ignore the size set by

set extra wizinfo size. The later only sets up a default entry for get extra wizinfo which can then be

manipulated without needing set extra wizinfo in case of an array.

See also efun/get extra wizinfo, efun/set extra wizinfo size.

8.130 set extra wizinfo size

void set_extra_wizinfo_size(s)

int s;

Set the size of the additional wizinfo entry. A positive size s means that it is an array with s entries; a size

of -1 means that it is a single variable.

See also efun/set extra wizinfo, efun/get extra wizinfo.

8.131 set heart beat

int set_heart_beat(flag)

int flag;

Enable or disable heart beat. If the heart beat is not needed for the moment, then do disable it. This will

reduce system overhead.

Return true for success, and false for failure. Speci�cally, it will fail if the heart beat function has been

disabled, which it will be if there is a run time error in it.

See also lfun/heart beat.

8.132 set is wizard

int set_is_wizard(ob,flag)

object ob;

int flag;

Sets the wizard
ag for a player object with
ag = 1, queries it with
ag = -1 and resets it with
ag = 0.

See also query_is_wizard.

8.133 set light

int set_light(n)

int n;

An object is by default dark. It can be set to not dark by calling set light(1). The environment will

then also get this light. The returned value is the total number of lights in this room.

Note that the value of the argument is added to the light of the current argument. Don't confuse this with

the lfun set light de�ned by `/complex/room' which actually sets the light.

See also /basic/light::set light, add light, light

8 EXTERNAL FUNCTIONS (EFUN) 43

8.134 set living name

void set_living_name(name)

string name;

Set a living name on an object that must be living. When this is done, the object can be found with

find living().

An object can only have one name that can be searched for with find living().

See also efun/�nd living, efun/�nd player.

8.135 seteuid

This function is de�ned

in native mode only

int setuid(str)

string str;

Set e�ective uid to `str'. It is not possible to set it to any string. It can always be set to getuid(), the

creator of the �le for this object or 0. When this value is 0, then current objects uid can be changed by

export_uid, and only then. But, when the value is 0, no objects can be loaded or cloned by this object.

See also efun/export_uid, efun/getuid.

8.136 set modify command

mixed set_modify_command(ob)

object ob;

Call the function modify_command in an interactive object ob to modify each command given

by this object(). This is very convenient for alias/history tools. Upon disconnectiong a

set mod�y command(0) is done automatically.

Valid return values are a modi�ed string, 0 or 1. 1 indicates that the function doesn't wish further

processing.

8.137 set this object

void set_this_object(object_to_pretend_to_be)

object object_to_pretend_to_be;

This is a privleged function, only to be used in the master object or in the simul efun object. It changes

the result of this_object() in the using function, and the result of previous object() in functions called in

other objects by call other(). Its e�ect will remain till the return of the using function.

Use it with extreme care to avoid inconsistencies. After a call of set this object(), some LPC-constructs

might behave in an odd manner, or even crash the game. In particular, using global variables or calling

local functions (except by call other) is illegal.

Allowed are call_other, map functions, access of local variables (which might hold array pointers to a global

array), simple arithmetic and the assignment operators.

8.138 set prompt

string set_prompt(new,ob)

string new;

object ob;

Sets the prompt to new if it is non-zero and returns the old one.

8 EXTERNAL FUNCTIONS (EFUN) 44

8.139 shadow

object shadow(ob,flag)

object ob;

int flag;

If
ag is 1, then current object will shadow ob. If
ag is 0, then either 0 will be returned, or the object

that is shadow for ob.

An object that de�nes the funtion query prevent shadow() to return 1 can't be shadowed, and the shadow()

function will return 0 instead of ob.

If an object a shadows an object b, then all call_other() to b will be redirected to a. If object a has not

de�ned the function, then the call will be passed on to b.

There is only one object that can call functions in b with call_other(), and that is a. Not even object b can

call other() itself.

All normal (internal) function calls inside b will however remain internal to b.

There are three ways to remove the shadow. Either destruct it, the object that was shadowed or use

unshadow() from the shadow.

In the later case, the shadow will also be destructed automatically. The result is that it is possible to hide

an object behind another one, but everything can be totally transparent.

See also efun/unshadow.

8.140 shout

void shout(str)

string str;

Send a string str to all players. This function is also used by the shout command.

See also efun/write, efun/tell object, efun/say.

8.141 sizeof

int sizeof(arr)

Return the number of elements of an array arr or the number of indices (or values) in mapping arr.

sizeof(0) is 0, this allows to test the size of uninitialized arrays.

See also efun/allocate.

8.142 snoop

object snoop(snoopee)

object snoopee;

Forward all messages given to a living object to the current player.

The correct syntax for efun::snoop is: snoop(snooper[, snoopee]) but the simul efun snoop() maintains

compatibility.

Return values are: -1: snooping loop, failed. 0: already snooped, failed. 1: success.

See also efun/living.

8.143 sort array

mixed* sort_array(arr,greater_fun,ob)

mixed* arr;

string greater_fun;

object ob;

Returns an array sorted by the ordering function ob->greater_fun()

The function `greater fun' in the object `ob' is continously passed two arguments which are two of the

elements of the array `arr'. It should return true or a positive number if the �rst argument is greater than

the second.

8 EXTERNAL FUNCTIONS (EFUN) 45

8.144 sprintf

string sprintf(fmt,arg,...)

string fmt;

mixed arg;

Most of the characters in the format string (FMT) get passed straight through to the output (ie: printed

or put in the return string), to format the arguments into the string it's nessasary to include an argument

format string (AFS) in the FMT. An AFS is a series of characters starting with a percent sign "argument

type speci�er. To include a "nessasary to include a double percent sign "

Valid argument type speci�ers are:

"s" the argument is a string.

"d" the argument is an integer to be included in decimal representation.

"i" same as "d".

"o" the argument is an integer to be included in octal representation.

"x" the argument is an integer to be included in hexidecimal representation.

"X" as "x" except letters are capitalised.

"O" the argument is an LPC datatype to be printed in an arbituary format, this is for debugging

purposes. If the argument is an object then the function object_name() on the master object is

called with the object as a parameter, the string returned is included in brackets at the end of

object �le name. If 0 is returned then nothing is appended after the �le name.

Between the percent sign and the argument type speci�er in the AFS, the following modi�ers can be

included to specify the formatting information. Order is not important unless otherwise speci�ed. "n" is

used to specify a integer, which can be a "*" in which case the next argument is used as the number.

Modi�ers:

n specifys the �eld size, if prepended with a zero then the pad string is set to "0".

"."n speci�es the presision, for simple (not columns or tables) strings speci�es the truncation length.

":"n n speci�es the fs and the presision, if n is prepended by a zero then the pad string is set to "0".

"'X'" the pad string is set to the char(s) between the single quotes, if the �eld size is also prepended with

a zero then which ever is speci�ed last will overrule.

NOTE: to include "' " in the pad string, you must use "nn' " (as the backslash has to be escaped

past the interpreter), similarly, to include "n" requires "nnnn".

" " pad positive integers with a space.

"+" pad positive integers with a plus sign.

"�" left adjusted within �eld size. NB: std (s)printf() defaults to right justi�cation, which is unnatural

in the context of a mainly string based language but has been retained for \compatability" ;)

"|" centered within �eld size.

"=" column mode. Ignored unless the argument type speci�er is s. Field size must be speci�ed, if

presision is speci�ed then it speci�es the width for the string to be wordwrapped in, if not then the

�eld size is. The �eld size speci�es the width of the column.

"# " table mode. Ignored unless the argument type speci�er is s. Field size must be speci�ed, if presision

is speci�ed then it specifys the number of columns in the table, otherwise the number is \optimally"

generated. Table mode is passed a list of slosh-n separated `words' which are put in a format similar

to that of ls.

"@" the argument is an array. the corresponding AFS (minus all "@") is applied to each element of the

array.

8.145 sscanf

int sscanf(str,fmt,var1,var2...)

string str;

string fmt;

Parse a string str using the format fmt. fmt can contain strings separated by `%d' and `%s'. Every `%d'

and `%s' corresponds to one of var1, var2, : : : `%d' will give a number and `%s' will give a string.

8 EXTERNAL FUNCTIONS (EFUN) 46

Number of matched `%d' and `%s' is returned.

See also efun/extract, efun/explode.

8.146 stringp

int stringp(arg)

Return 1 if arg is a string.

See also intp, clonep, objectp, pointerp, referencep,
oatp, mappingp.

8.147 strlen

int strlen(str);

string str;

Returns the length of a string str.

See also efun/sizeof, efun/strstr, efun/stringp.

8.148 strstr

int strstr(str,str2,pos);

string str,str2;

int pos;

Returns the index of str2 in str searching from position pos. The third argument is optional.

See also efun/strlen, efun/sscanf, efun/sprintf, efun/explode.

8.149 tell object

void tell_object(ob,str)

object ob;

string str;

Send a message str to object ob. If it is an interactive object (a player), then the message will go to him,

otherwise it will go to the local function catch tell (which can be de�ned by player objects nowadays).

See also efun/write, efun/shout, efun/say, efun/tell room, lfun/catch tell.

8.150 tell room

void tell_room(ob,str,exclude)

object ob;

string str;

mixed exclude;

Send a message str to object all objects in the room ob. ob can also be the name of the room (i.e., a

string).

The optional parameter exclude is an array of the objects which should not receive str.

See also efun/write, efun/shout, efun/say, efun/tell object, lfun/catch tell.

8.151 test bit

int test_bit(str,n)

string str;

int n;

Return bit n of str (i.e., return 1 if bit n was set in string str, otherwise return 0).

See also efun/set bit, efun/clear bit.

8 EXTERNAL FUNCTIONS (EFUN) 47

8.152 this interactive

object this_interactive()

Return the object representing the player at the beginning of the execution chain.

See also efun/this player, efun/previous object.

8.153 this object

object this_object()

Return the object pointer of this object. This is not to be confused with the internal name of an object,

which is used by the id() function.

See also efun/this player, efun/previous object.

8.154 this player

object this_player()

Return the object representing the current player.

See also efun/this object.

8.155 time

int time()

Return number of seconds since 1970.

See also efun/ctime.

8.156 to array

int to_array(arg)

mixed arg;

Converts arg into an array.

See also efun/to
oat, efun/to int, efun/to string.

8.157 to
oat

int to_float(arg)

mixed arg;

Converts arg into a
oat.

See also efun/to array, efun/to int, efun/to string.

8.158 to int

int to_int(arg)

mixed arg;

Converts arg into an int, example: to int("42") = 42

See also efun/to array, efun/to
oat, efun/to string.

8.159 to string

int to_string(arg)

mixed arg;

Converts arg into a string, example: to string((f 'a', 'b', 'c' g)) = "abc"

See also efun/to array, efun/to
oat, efun/to int.

8 EXTERNAL FUNCTIONS (EFUN) 48

8.160 trace

int trace(traceflags)

int traceflags;

Sets the trace
ags and returns the old trace
ags. When tracing is on a lot of information is printed during

execution.

The trace bits are:

1 Trace all function calls to lfuns.

2 Trace all calls to call other.

4 Trace all function returns.

8 Print arguments at function calls and return values.

16 Print all executed stack machine instructions (produces a lot of output!).

32 Enable trace in heart beat functions.

64 Trace calls to apply.

128 Show object name in tracing.

8.161 tracepre�x

string traceprefix(prefix)

string prefix

If the the tracepre�x is set (i.e. not 0) tracing will only occur in objects having a name with the set pre�x.

8.162 transfer

This function is de�ned

in compat mode only

int transfer(item,dest)

object item;

object dest;

Move the object item to the object dest. All kinds of tests are done, and a number is returned specifying

the result:

0: Success.

1: To heavy for destination.

2: Can't be dropped.

3: Can't take it out of it's container.

4: The object can't be inserted into bags etc.

5: The destination doesn't allow insertions of objects.

6: The object can't be picked up.

If an object is transfered to a newly created object, make sure that the new object �rst is transfered to it's

destination.

The returns values of transfer() are de�ned in the include �le `/basic/move.h'.

When you call transfer() in your code the call will be intercepted by the simul efun transfer which adds

some additional checks to see if your request to move an object is accepted by the current environment, the

new environment and the object itself, see move object to see how it is done.

This function is not going to be removed in tubmud.

See also efun/move object, lfun/drop, lfun/get, lfun/prevent insert, lfun/can put and get, lfun/add weight.

8.163 transpose array

mixed *transpose_array(arr)

mixed *arr;

Transpose array arr. This can be used to convert alists into a format that can be handled by map array.

8 EXTERNAL FUNCTIONS (EFUN) 49

8.164 unique array

mixed unique_array(obarr,separator)

object obarr;

string separator;

Groups objects together for which the separator function returns the same value. obarr should be an

array of objects, other types are ignored. The separator function is called only once in each object in

obarr. The return value is an array of arrays of objects on the form:

({

({Same1:1, Same1:2, Same1:3, Same1:N }),

({Same2:1, Same2:2, Same2:3, Same2:N }),

({Same3:1, Same3:2, Same3:3, Same3:N }),

....

....

({SameM:1, SameM:2, SameM:3, SameM:N }),

})

8.165 unshadow

void unshadow()

This function can be called by a shadow to abort shadowing.

See also efun/shadow.

8.166 update actions

This function is de�ned

in =obj=simul efun:c

void update_actions()

Updates this object()'s actions in all living objects.

8.167 users

object *users()

Return an array of objects, containing all interactive players.

8.168 wizlist

void wizlist()

Prints the wizlist. Often mistaken for a Top-10 list but it is just statistic. Takes creator() as its optional

argument.

See also efun/wizlist info.

8.169 wizlist info

mixed* wizlist_info()

Returns an array of arrays, where every subarray represents an entry in the wizlist which consist of seven

variables.

w[0] = wizard's name.

w[1] = total number of commands executed by his objects.

Saved between reboots and decaying 1% per hour.

w[2] = total eval_cost. Decaying 10% per hour.

w[3] = total heart_beats. Decaying 10% per hour.

w[4] = reserved.

w[5] = total size of used arrays.

w[6] = the extra svalue. If it is an array, it will be copied.

See also efun/wizlist, efun/set extra wizinfo, efun/get extra wizinfo

8 EXTERNAL FUNCTIONS (EFUN) 50

8.170 write

void write(str)

string str;

Write a message str to current player. str can also be a number, which will be translated to a string.

See also efun/say, efun/tell object, efun/shout, lfun/catch tell

8.171 write bytes

int write_bytes(file,start,bytes)

string file,bytes;

int start;

Writes the bytes of the string bytes into the �le speci�ed by file, beginning at start. The return code is

1 for success, 0 otherwise.

Note: The bytes in your �le will be overwritten. The �le has to be existent to perform write bytes.

See also: efun/�le size, efun/log �le, efun/write �le, efun/read bytes

8.172 write �le

int write_file(file,str)

string file,str;

Append the string str to the �le file.

See also efun/�le size, efun/cat, efun/log �le.

8.173 version

This function is de�ned

in =obj=simul efun:c

string version()

Returns the gamedriver version string.

9 LOCAL FUNCTIONS (LFUN) 51

9 Local Functions (lfun)

9.1 General Lfuns

9.1.1 add weight

int add_weight(w)

int w;

An object that can contain other objects must de�ne this function. It is called with the extra weight of

the new object. If this is ok, then it has to increment the local weight count, and return true. Otherwise,

return false, and the new object can not be entered into this object.

9.1.2 apply action

int apply_action(skill,level,arg)

string skill;

int level;

mixed arg;

This function is called when a player uses the skill skill on the object which de�nes it. The success of the

action should depend on the skill and the level which is a percentage relative to the possible skill maximum.

A return value of 0 means failure to use the skill, a value greater than 0 means success, whereupon value�1

is added to the current skill in the skill path.

(See also section ??)

9.1.3 can put and get

int can_put_and_get(str)

string str;

De�ne this function if you want to make it possible to put something into the current object. Return true

if this is ok, otherwise 0. That means that the default is that it is not possible to put something into an

object.

When a player does `look at xxx', then `xxx' will be sent to can_put_and_get(), to test if the player can

look at the inventory. Otherwise, str will be 0. This is trivial for containers. If the are open, they return 1.

If id() accepts other things, like `lock' (e.g., in a chest). Then `lock' will be sent to can put and get(),

which should return false, because the lock has no inventory, of course.

See also lfun/id, lfun/long.

9.1.4 catch tell

void catch_tell(str)

string str;

When tell_object() sends a message to a noninteractive player, it will get to the function catch tell().

This will enable communications between NPC's and from a player to an NPC. The only exception is

`shout', which the monster won't hear. The monster must be living, i.e., the function enable commands()

must have been called. It will be used in interactive objects if present. In this case, only the player object

itself sends messages to the internet. When remove interactive sets the closing
ag, it will also disable all

catch tell functions for the a�ected interactive, thus avoiding errors in these functions.

See also efun/enable commands, efun/disable commands.

9 LOCAL FUNCTIONS (LFUN) 52

9.1.5 clean up

void clean_up(arg)

int arg;

clean up() is called when an object hasn't been used for long, to give it a possibility to self-destruct. The

reference count passed as argument will be 0 for clone objects, 1 for a simple loaded object, and greater

when the object is cloned or inherited by some existing object. It is recommended not to self-destruct the

object when the reference count is greater than one. When clean up returns 0 or no value, it won't be

called in a swapped object again till the object is loaded again from swap. Returning a non-zero value

is only recommended when the reason why the object can't self-destruct is likely to vanish without the

object being touched, that is, when no local function is called in it, it isn't searched for by �nd object, nor

function exists is applied to it.

/obj/drink uses clean up to self-destruct when it is empty, not carried by a living being and not touched

for long.

/room/room uses clean up to let the room self-destruct if neither inherited nor used as blueprint, and if it

is empty and has no environment too.

A typical mud con�guration de�nes the time to wait for clean up so long that you can assert reset(1) has

been called since the object has been touched last time.

(See also section ??).

9.1.6 drop

int drop(silently)

int silently;

This function must be de�ned by all objects that want to control when they can be dropped. if silently

is true, then don't write any messages.

drop() should return 1 to prevent dropping. This is the opposit of the get() function. That is because if

drop() is not de�ned, it will always be possible to drop an object.

If the object self-destructs when drop() is called, be sure to return 1, as the destructed item surely cannot

be dropped. Similarly, if drop() is called in another object, always test if the object did self-destruct, as

the object variable will turn to 0.

9.1.7 exit

void exit(ob)

object ob;

This function is called in rooms everytime a living object ob leaves. The function this_player() will

return a random value, don't use it at this point.

See also: lfun/init.

9.1.8 extra long

string extra_long()

If this function returns a string, and the object is inside a /complex/room, then the string returned by this

function will be printed after the long description but before the list of exits.

See also lfun/extra look.

9.1.9 extra look

string extra_look()

If this function returns a string, and the object is carried by a player, then the string returned by this

function will be printed after the character data, but before the list of what the character is carrying. This

can be used to introduce curses for players, that gives some visual result.

See also lfun/short, lfun/query auto load lfun/extra long

9 LOCAL FUNCTIONS (LFUN) 53

9.1.10 get

int get(str)

string str;

If an object wants control the possibility of picking it up, then it must de�ne get(), and return 1 if it is

ok to pick it up.

The argument str comes from the syntax `get str' from the player command. The local function id()

has been called before this function call to identify the object.

9.1.11 heart beat

void heart_beat()

This function will be called automatically every 2 seconds. The start and stop of the heart beat is controlled

by set_heart_beat().

Be careful not to have objects with heart beat running all the time, is it uses a lot of resources. If there is

an error in the heart beat routine, the heart beat will be turned o� until this object is recompiled, and can

not be restarted with set_heart_beat().

The function this_player() will return this object, but only if it is living. Otherwise the function

this_player() will return 0.

See also: efun/set heart beat, efun/call out, efun/enable commands.

9.1.12 id

int id(str)

string str;

This function is used to identify an object. If it identi�es with the string str, then return 1, else return 0.

Note: If you want to give an object an id player should not be able to use prepend "nn" to the id string

(e.g. "nnmy invisible object")

See also efun/present.

9.1.13 init

void init()

This function is called everytime a living objects can `see' the object. It is good to the set up of

add action() and add verb() in the init() routine.

See also lfun/exit.

9.1.14 long

void long(str)

string str;

This function prints out an elaborate description of itself. The minimum requirement is to print the same

description as the local function short().

If there is an argument, then print the description of that argument. An argument can only be passed to

long() if the local function id() has agreed. For example, a room with a door can allow id("door") to

be true. Then it is possible for a player to do `look at door'. The function long() will then have to print

information about the door. To prevent the listing of all things in this room when the player does `look at

door', let can_put_and_get("door") return 0.

See also lfun/short, lfun/can put and get, lfun/id.

9.1.15 notify petri�cation

void notify_petrification(player)

object player;

This function is called inside a room when a player in it turns into a statue.

9 LOCAL FUNCTIONS (LFUN) 54

9.1.16 notify resurrection

void notify_resurrection(player)

object player;

This function is called inside a room when a player statue in it turns alive again.

9.1.17 query auto load

string query_auto_load()

An object that wants to be loaded automatically when the player logs in should de�ne this function. There

are some important rules for the usage of this feature.

1. The object must not have any weight.

2. The object must prevent the player from dropping it.

3. query_auto_load() must return a string of the format

�le:argument

The `�le' is the de�nition that will be cloned. The `arg'

is a string that will be sent as argument to the function

init arg(). The `argument' can be an empty string.

4. The object must not be an actively usable item, like

weapon or armour.

5. The object must not help the player in combats.

The idea with this feature is that a player can get a curse or membership, that will stick with him, even if

he quits. The idea is not that the player will save his weapons etc.

Look at `/obj/shout curse.c' for an example.

See also lfun/extra look.

9.1.18 query info

string query_info()

Declare this function if the object has some information that is hidden. A scroll of identify would call

query info() to �nd out.

The standard objects weapon.c, armour.c and treasure.c all have a function set info(), to enable

setting an information string.

9.1.19 query name

string query_name()

All living objects, weapons and armour must return the name of itself.

See also lfun/short.

9.1.20 query no teleport

int query_no_teleport(from,to,player)

mixed from,to;

object player;

Every room can de�ne this function. It has to return a nonzero value if teleporting to and from this room

is not allowed. In order to ensure that it is working properly, every teleportation item available to players

has to check for this.

The correct way to do this is to inherit `/basic/teleport' and call teleport ok(from, to, player),

where player defaults to this player.

Teleporting can also be disabled by the properties P NO TELEPORT, P NO TELEPORT FROM &

P NO TELEPORT TO.

9 LOCAL FUNCTIONS (LFUN) 55

9.1.21 query value

int query_value()

Return the value of this object. If it is not possible to sell this object, then the value 0 should be returned.

One gold coin corresponds to one experience point, as a reference.

9.1.22 query weight

int query_weight()

This function is called to query the weight of this object. It is a design choice of this game that objects

inside another object do not change the weight of that object. This makes it possible for a player to carry

more if he puts it into a bag or something. Note that an object doesn't have a shape or a size, only a

weight.

9.1.23 reset

void reset(flag)

reset() is called everytime the object is resetted. The �rst time is when the object is loaded. If a room

creates things when reset(), it should check that these objects don't exist any longer (at least in this

room) creating new.

When reset() is called for the �rst time, a null argument is passed. The second time reset() is called

flag will be 1. Every object will repeatedly get resetted by the game driver. The game wouldn't be fun if

no challenges remained.

9.1.24 short

string short()

All objects must have a short() function. This function returns a short message describing what it is.

Invisible objects will return the value 0.

See also lfun/long.

9.2 Functions of /obj/cron

9.2.1 time

int time()

Mud time in seconds. See <timezone.h>.

9.2.2 timeofday

int timeofday()

Mud time in seconds of the day. See <timezone.h>.

9.2.3 crontab add

void crontab_add(when,obj,fun,arg)

int when;

string obj,fun;

mixed arg;

Set up a cron job to call obj->fun(arg) every mud day at time when. The cron table is saved immediately

and the entry will remain until crontab_remove(when,obj,fun) is called!

9.2.4 crontab list

void crontab_list()

List the cron job table.

9 LOCAL FUNCTIONS (LFUN) 56

9.2.5 crontab remove

void crontab_remove(when,obj,fun)

int when;

string obj,fun;

Remove a cron job.

9.3 Functions of /obj/living

These are most of the query *() functions of living.c:

int query ac() The armour class

object query age() the age of the player in seconds / 2

object query attack() the attacker object or zero

int query con() The constitution value

string query current_room() Filename of the current environment

int query dex() The dexterity value

int query gender() 0 (neuter), 1 (male) or 2 (female)

string query gender string() (f "neuter", "male", "female" g)[gender]

int query hp() The current number of hit points

int query int() The intelligence value

int query level() The level of a player or monster. All mobile (living) objects must de�ne

this. The lowest level is 1. An apprentice wizard has level 20, and a full

wizard with a castle has level 21

int query local weight() The local weight

int query max hp() Maximum number of hit points

int query money() The amount of money

int query npc() True for Non-player-characters (monsters etc.)

string query objective() (f "it", "him", "her" g)[gender]

string query possessive() (f "its", "his", "her" g)[gender]

string query pronoun() (f "it", "he", "she" g)[gender]

int query sp() The number of spell points

int query spell points() Same as query sp()

int query str() The strength value

int query wc() The weapon class

string query wield() the name of the wielded weapon

int query wimpy() The whimpy value, yes `whimpy'

9.3.1 add money

void add_money(m)

int m;

Objects that can pick up the special `money' object should have this function. It will be called with the

amount of gold coins.

9.3.2 attack

status attack()

This function is called from heart_beat(). It returns true if there is still a �ght.

9.3.3 attacked by

void attacked_by(ob)

object ob;

This routine sets the attacker ob if it is zero or the alt attacker ob if it is zero. This is called in the

opponent when starting to attack it.

9 LOCAL FUNCTIONS (LFUN) 57

9.3.4 clear
ag

void clear_flag(n)

int n;

Clear a bit in the
ags string of an object that inherits /obj/living. When you want to use a
ag you have

to request it from the
ag dispenser �rst.

See also lfun/set
ag lfun/test
ag efun/clear bit

9.3.5 heal self

void heal_self(h)

int h;

This routine is called when the object is allowed to heal by `h' points. Of course, this is only interesting for

living objects.

9.3.6 hit player

int hit_player(dam,who)

int dam;

object who;

If the object can �ght and get hit by other objects, it must have a hit player function. The dam is the

maximum damage the other object wants to give. Return the actual damage.

This function should also tell other players in the current room that someone got hit (using say()).

The second, optional, argument is the attacker. If it is a living object a �ght will start. Your average

non-living room can drain hitpoints without starting a �ght.

See example in `player.c'.

See also efun/enable commands, efun/living, lfun/attacked by.

9.3.7 move living

void move_living(dir_dest,dest)

string dir_dest,dest

This function moves the living object in direction dir to dest. The argument dir dest may be a string of

the format "dir#dest", this remains from a time when lfuns had only one argument. The �rst argument

should just be a string like "north" or "up" and the second argument should be the �lename of the room

to move to. move living() uses move player but additionally calls leave inv in the old environment

and enter inv in the new environment. When dir is "X" the player teleports (mmsgout and mmsgin are

printed instead of msgin and msgout) and if it is 0 no messages are printed.

9.3.8 receive object

void receive_object(ob,pl)

object ob,pl;

This function gets called in a living object whenever player `pl' gives item `ob' to the object.

9.3.9 run away

void run_away()

Let the player or npc run away in a random direction (only standard directions).

9 LOCAL FUNCTIONS (LFUN) 58

9.3.10 set
ag

void set_flag(n)

int n;

Set a bit in the
ags string of an object that inherits /obj/living. When you want to use a
ag you have

to request it from the
ag dispenser �rst. You are not supposed to do this arbitrarily. Every wizard can

allocate a few bits from the administrator, which he then may use. If you manipulate bits that you don't

know what they are used for, unexpected things can happen.

See also lfun/clear
ag lfun/test
ag efun/set bit

9.3.11 show stats

void show_stats()

Living objects should de�ne this function. It should print all important stats about the object.

9.3.12 stop �ght

void stop_fight()

This function must be de�ned by all monster and player objects. If you call this function, that player or

monster will stop �ghting. If you want to stop a �ght, you have to call stop fight() in both opponents.

9.3.13 stop wearing

void stop_wearing(type)

string type;

Stop wearing a piece of armour of the speci�ed type. This function is called by the armour, which should

de�ne the verb "remove".

9.3.14 stop wielding

void stop_wielding()

Objects able to wield weapons should have this function. It is called by the weapon when it is not possible

to continue wielding the weapon. The function should adjust the weapon class of the current object.

9.3.15 test
ag

int test_flag(n)

int n;

Test a bit in the
ags string of an object that inherits /obj/living . When you want to use a
ag you have

to request it from the
ag dispenser �rst.

See also lfun/set
ag lfun/clear
ag efun/test bit

9.3.16 test if any here

int test_if_any_here

For monsters. Call this one if you suspect no enemy is here any more. Returns 1 if anyone there, 0 if none.

9.4 Functions of /obj/player

/obj/player inherits /obj/living, /basic/time, /basic/view and the following objects from /obj/player/:

autoload, guild, (less), quest, scar, shell, snoop, wizline

These are most of the query *() functions of player.c:

9 LOCAL FUNCTIONS (LFUN) 59

query al title the alignment title

query brief the brief/verbose
ag

query channels the channels of the wizline

query domains the domains a wizard belongs to

query guilds A string, set bits represent memberships

query intoxication intoxication (how much alco drink was consumed)

query mailaddr the e-mail address

query pretitle the pretitle

query quests the quest string (quests are separated by #)

query real name the login name of a player (in lower case)

query stu�ed stu�ed (how much was eaten)

query soaked soaked (how much soft drink was consumed)

query title the title

query vis name the login name of a player

9.4.1 add alignment

void add_alignment(a)

int a;

alignment = alignment * 9 / 10 + a;

9.4.2 add exp

void add_exp(exp)

int exp;

experience += e

9.4.3 add intoxination

void add_intoxination(i)

int i;

intoxicate += i; There are also add stuffed and add soaked.

9.4.4 clear intoxication

void clear_intoxication()

Clears the intoxication.

9.4.5 command less

void less::command_less(files)

string files;

This function allows to read �les in blocks of about 20 lines. Don't call this function in another object than

this player() because it relies on this player().

9.4.6 compute values

int compute_values(ob)

object ob;

Recursively compute the values of the inventory of ob.

9.4.7 normalize path

string valid::normalize_path(path)

mixed path;

Substitutes the strings "

~

", "." and ".." in a path which may be given as a string or an array

(explode(path,"/")). An array is returned.

9 LOCAL FUNCTIONS (LFUN) 60

9.4.8 recompute armour class

void recompute_armour_class()

Recalculates the total ac of the worn armour. When a piece of armour is destructed or changes its ac this

function has to be called in order to adjust the player's ac.

9.4.9 second life

int second_life(corpse)

object corpse;

This function is called when a living object dies, in case of player objects it starts the death sequence.

9.4.10 valid read

string valid::valid_read(string)

Returns a normalized path if the �le may be read, 0 otherwise.

9.4.11 valid write

string valid::valid_write(string)

Returns a normalized path if the �le may be written to, 0 otherwise.

9.4.12 trusted

int valid::trusted(ob)

object ob;

Check whether object ob is trusted. This is done by means of another object, which is loaded via the

wizard's castle. This may be the castle itself, for instance. This function produces a warning when the

pointer is zero, for security reasons.

The castle has to de�ne a function valid trusted which returns the object pointer to the actual object

which de�nes the function trusted. The return value of castle->valid trusted()->trusted(ob) is the

return value of valid::trusted().

Additionally `/secure/access' holds a list of objects which are always trusted objects.

9 LOCAL FUNCTIONS (LFUN) 61

9.5 Functions of /obj/monster

/obj/monster inherits /obj/living

The following functions can be used to con�gure a monster; all except set name and set level are optional:

set name(n) string n. Sets the name and short description to n. Sets long description to

"You see nothing special.nn"

set level(l) int l. The monster gets the level l. Hit points and ep is set as the same as

player of level l. Armour class to 0 and weapon class to that of hands.

set hp(hp) int hp. Sets hit points to hp.

set ep(ep) int ep. Sets ep to ep.

set al(al) string al. Stets the alignment to al, negativ is evil, pos good.

set alias(n) string n. Adds and alternate name for the monster.

set alt name(n) string n. Adds another alternate name for the monster.

set race(r) string r. Adds an alternate generic name for the monster.

set short(sh) string sh. Sort description is set to sh. Long to short + "nn"

set long(long) string long. Long description is set to long.

set wc(wc) int wc. Sets the weapon class, how much the damage it will do, to wc. The

damage in
icted is in the range 0..wc-1

set ac(ac) int ac. Armour class is set to ac.

set aggressive(a) int a. 0 means peaceful until attacked. 1 that it will attack everyone it sees.

set move at reset() If this routine is called the monster will do a random move at every reset.

set frog() If anyone kisses the monster he will turn into a frog.

set whimpy() When monster get low on hp it will
ee.

init command(string cmd)Force the monster to do a command. The force us() function isn't always

good, because it checks the level of the caller, and this function can be called

by a room.

set dead ob(ob) object ob. The function `monster died' in `ob' will be called just before the

monster dies. The �rst argument to `monster died' will be the nearly dead

monster object. The second argument to `monster died' will be the monster's

corpse. The return value from `monster died' determines the fate of the mon-

ster. A 1 means the monster will survive, 0 that it will die.

set init ob(ob) object ob. The function `monster init' in `ob' will be called from init in the

monster. The argument to `monster init' will be the the monster object. The

return value from `monster_init' determins if the monster will attack, if it's

aggressive. A 1 means that the monster will not attack, 0 that it will function

as usually.

set give ob(ob,func) object ob, string func. Calls func(item,pl) in ob whenever player `pl' gives

item `item' to the monster. func is optional and defaults to \receive object".

set spell mess1(m) string m. This is the message that the other players in the room get when the

monster cast's a spell.

set spell mess2(m) string m. This is the message that the victim of the monster's spell get.

set chance(c) int c. This is the percent chance of casting a spell.

set spell dam(d) int d. How much damage the spell will do if it hits. The damage will be

randomly 0 .. d-1

9 LOCAL FUNCTIONS (LFUN) 62

set death mess(m) string m. The message which is output when the monster dies instead of

<monster name> died. m="" will output nothing at all, while m=0 will give

you the normal message. Don't forget the "nn".

set corpse weight(i) int i. When our monster dies, the corpse will weight i units. The default is 5.

Think of a good weight for several monsters. For example a
y should have a

set corpse weight(1);, to prevent the corpse from looking `very heavy'.

load chat(chance, strs) This enables the monster to say something every heart beat. chance is the

probability that something will be said. strs is an array of strings which will

be printed one at a time.

load a chat(chance, strs) This enables the monster to chat while �ghting.

9.5.1 pick any obj

void pick_any_obj()

The monster picks up everything it can carry when this function is called.

9.5.2 query npc

int query_npc()

This function is de�ned by all living objects and monsters. It will return 1 for monsters, and 0 for players.

(NPC means Non Player Character.)

9.5.3 receive object

void receive_object(ob,pl)

object ob,pl;

This function is called when the monster receives the object ob from the player pl.

9.6 Functions of /complex/door

/complex/door inherits /complex/item and the following basic objects: exit, open, lock, orientation, door-

tuple

An object that wants to create a door should inherit /basic/makedoor. Descriptions of the door object

itself might be added later.

9.6.1 make door

object make_door(verb,dest,description)

string verb,dest,description;

Creates a door which moves a player to dest when he enters verb. The long description of the door is

description. The door uses `/basic/exit' to move the player; the exit hook which prevents movement

when the door is closed is door::door hook(), another hook can be installed if the door object is accessed

on a lower level. The function doortuple::set destination(verb, dest) tries to create a counterpart of

the door, facing the opposite direction. verb should be a standard direction like "north", "east" or "up"

because orientation::orientation reverse() has to generate the other direction automagically.

9.7 Functions of /complex/item

/complex/item inherits the following basic objects: description, id, move, value.

9.7.1 id

int id::id(str)

string str;

Return true if the object identi�es as str. This is used by present() if the �rst argument is a string.

9 LOCAL FUNCTIONS (LFUN) 63

9.7.2 move

int move::move(dest)

mixed dest;

Move this object to the destination given by string/obj dest.

This function will remain but don't rely on move check, move prolog, move epilog, enter inv & leave inv

since move object now already provides notify functions for exactly the same purpose.

The return codes of move are de�ned in `basic/move.h' (??). They are identical with the returns codes of

the efun transfer().

In tubmud move is not de�ned in all objects, don't rely on it if you are not sure what kin of item you are

moving, move object and transfer are always safe, however.

9.7.3 query encumbrance

int move::query_encumbrance

Query the bulkiness of the object. This replaces the 2.4.5 object weight; it is a meassure for volume and

weight.

9.7.4 query id

string *id::query_id()

Query the array of names which identi�es the object.

9.7.5 query long

string description::query_long()

Query the long description (For 2.4.5 compatibility this is also available from `long').

query description long() also returns the long description (this can be useful if you can't access descrip-

tion::query long() because description.c is inherited by an object which is inherited by your object and not

directly).

9.7.6 query short

string description::query_short

Query the short description (For 2.4.5 compatibility this is also available from `short').

9.7.7 query value

int value::query_value()

Query the value.

9.7.8 query weight

int move::query_weight()

Query the weight of the object. The encumbrance value is used to calculate a weight for the object (for

2.4.5 compatibiliy).

9.7.9 set encumbrance

void move::set_encumbrance(enc)

int enc;

Set the encumbrance value. When the object already has an environment move prolog and move epilog are

called.

9 LOCAL FUNCTIONS (LFUN) 64

9.7.10 set id

void id::set_id(new_id)

string *new_id;

Set array of names which will identify the object.

9.7.11 set long

void description::set_long(str)

string str;

Set a long description (with a 'nn' at the end).

9.7.12 set short

void description::set_short(str)

string str;

Set a short description (without a 'nn' or '.' at the end).

9.7.13 set value

void value::set_value(v)

int v;

Set the value.

9.8 Functions of /complex/room

This is a generic room object, it inherits the following basic objects: description (see item.c), timedep*,

exit, light, property, extralong. Only some functions from light.c and exit.c are listed below:

9.8.1 light

int light::light()

Get the current light in the environment.

9.8.2 add light

int light::add_light(l)

int l;

This has the old efun::set light functionality: the light value is increased by l.

9.8.3 set light

int light::set_light(l)

int l;

Actually set the light, don't add to it.

9.8.4 query light

int light::query_light()

Query the light given by the current object.

9 LOCAL FUNCTIONS (LFUN) 65

9.8.5 set exits

void exit::set_exits(exits,commands)

string *exits,*commands;

Set the exits for this room. There are two ways to call this function. The �rst way is to pass two arrays,

the �rst containing the �lenames of the destinations and the second containing the associated commands.

The second method is to pass a single array of arrays. Every sub-array in the array represents an exit

(f filename, command, hook, flag g); If
ag is 1 (bit 0 is set) the exit won't be listed as an obvious exit.

Destination �lenames may be given as "./�le", the '.' will be replaced by the path of the room in which

the exit is de�ned.

Example:

set_exits(({

({ "room/church", "south" }),

({ "players/foo/workroom", "workroom", "test_access" }),

({ "players/foo/treasury", "abracadabra", 0, 1 })

}));

9.8.6 remove exits

void exit::remove_exit(command)

string command;

Remove the exit used with command.

9.8.7 add exit

void exit::add_exit(exit,command,hook,flag)

string exit,command,hook,flag;

Add or replace one exit. If bit 0 of the integer is set the exit won't be listed in the \obvious exits list".

9.8.8 set move hooks

void exit::set_move_hooks(hooks)

string *hooks;

Set the move hooks for this room. (A hook is the name of a function to be called, the function decides

whether the exit is usable or not).

Example: `/complex/door' de�nes a function door hook:

int

door_hook (str)

{

if (!query_open()) {

write ("The door is closed.\n");

return 1;

}

}

9 LOCAL FUNCTIONS (LFUN) 66

9.9 Functions of /basic/action

Generic skill logic for all skills which use the brain object. The include �le `/basic/action.h' is explained

in section ??. This object de�nes an example create() function:

void create(){

skillpath=({"skill","miscellaneous","curiosity"});

reward = LEARNING_1;

default_objects = ({});

specific = "skill";

command = "use";

function = "command_default";

}

9.9.1 set default objects

void set_default_objects(what)

string *what;

9.9.2 set function

void set_function(str)

string str;

9.9.3 set skillpath

void set_skillpath(what)

string *what;

9.9.4 query skillpath

string *query_skillpath()

9.9.5 query skill

string query_skill()

9.9.6 set reward

void set_reward(amount)

int amount;

9.9.7 query reward

int query_reward()

9.9.8 set command

void set_command(str)

string str;

9.9.9 set speci�c

void set_specific(str)

string str;

9.9.10 query info

string query_info(str)

string str;

9.9.11 init living

string *init_living(ob)

object ob;

9 LOCAL FUNCTIONS (LFUN) 67

9.9.12 command default

int command_default(arg)

string arg;

9.9.13 query actions

string *query_actions

9.10 Functions of /basic/alias

9.10.1 id alias

int id_alias(subject,space)

string subject,*space;

9.10.2 query alias

string query_alias(subject,space)

string subject,*space;

9.10.3 set single alias

void set_single_alias(name,description,space)

string name,*space;

mixed description;

9.10.4 set alias

void set_alias(names,description,space)

mixed names,description;

string *space;

9.10.5 set aliases

void set_aliases(names,descriptions,space)

mixed names,descriptions;

string *space;

9.10.6 remove single alias

void remove_single_alias(name,space)

string names,*space;

9.10.7 set alias name

void set_alias(str)

string *str;

9.11 Functions of /basic/autoload

Inherit this to make an object autoloading.

9.11.1 query auto load

string query_auto_load()

This function puts the �lename of the subclass (the object which inherits it) into the autoload string of a

player who carries it.

9.12 Functions of /basic/fakeitem

This object allows to add `faked' items to an object, an example is a wardrobe which identi�es itself as

`wardrobe', `door', `lock' and `keyhole'. It is not necessary to include this �le into `/complex/room' because

`/basic/timedepdesc' already provides a similar mechanism for time dependent descriptions. Item names

may be strings or array of strings, arrays will be treated as synonyms, using the same description.

9 LOCAL FUNCTIONS (LFUN) 68

9.12.1 set item description

void set_item_descriptions(names,descriptions)

mixed *names,*descriptions;

Set the items and their descriptions.

9.12.2 set one item description

void set_one_item_description(name,description)

mixed name,description;

Set one item description.

9.12.3 id

int id(str)

string str;

Return true if we describe an item with this id.

9.12.4 query long

string query_long(str)

string str;

Give long description of an item if we describe it.

9.12.5 query fakeitem long

string query_fakeitem_long(str)

string str;

Same as query long.

9.12.6 query items

mixed *query_items()

Return an array ({names, descriptions }).

9.12.7 add item

void add_item(name,description)

mixed name,description;

Set one item description (same as set one item description).

9.12.8 remove item

void remove_item(str)

string str;

Remove the item named str.

9.13 Functions of /basic/fsm

9.13.1 fsm transition

string fsm_transition(state,input,space)

string state,input,*space;

9.13.2 fsm set transition

void fsm_set_transition(state,input,action,space)

string state,input,*space;

mixed *action;

9 LOCAL FUNCTIONS (LFUN) 69

9.13.3 fsm set transitions

void fsm_set_transitions(state,transitions,space)

string state,*space;

mixed *transitions;

9.13.4 fsm test transition

string fsm_test_transition(ident,space)

string ident,*space;

9.14 Functions of /basic/grammar

9.14.1 vocal

int vocal(c)

int c;

Returns true if c is a vocal. Note that there is no type char, a character 'c' has the type int.

9.14.2 article

string article(str)

string str;

Returns the correct article for str.

9.14.3 articalize

string articalize(str)

string str;

Prepends the correct article to str.

9.15 Functions of /basic/namespace

This object manages a hierarchy of associative lists. Data entries in the alists are again alists up to the

leaves of this tree structure of alists, which contain the data stored in it. To access data in this tree you

have to know an array of keys. Key[1] has to be a key in the alist which is stored as the data associated

with Key[0].

9.15.1 add namespace

int add_namespace(key)

mixed key;

Insert a new key in the root list. Nothing is associated with it.

9.15.2 set namespace

int set_namespace(keys,data)

mixed *keys,data;

Inserts data in the tree. The keys array is a list of keys which are inserted into the tree if they do not

exit. data is associated with keys[sizeof(keys)-1] in the alist associated with keys[sizeof(keys)-2].

9.15.3 get namespace

mixed get_namespace(keys)

mixed *keys;

Returns the data selected by keys.

9 LOCAL FUNCTIONS (LFUN) 70

9.15.4 export namespace

mixed *export_namespace()

Returns the root of the tree. (static function)

9.15.5 import namespace

void *import_namespace(import)

mixed *import;

Imports a namespace (all alists in it are sorted with order alist). (static function)

9.16 Functions of /basic/open

Generic open/close logic

9.16.1 open

int open()

Set state to open and return true if state has changed.

9.16.2 close

int close()

Set state to closed and return true if state has changed.

9.16.3 query open

int query_open()

Return the state (true if open).

9.16.4 toggle

int toggle()

Toggle the state and return new state.

9.17 Functions of /basic/lock

Generic lock/unlock logic

9.17.1 lock

int lock()

Set state to locked and return true if state has changed.

9.17.2 unlock

int unlock()

Set state to unlocked and return true if state has changed.

9.17.3 query lock

int query_lock()

Return the state (true if locked).

9.17.4 toggle

int toggle()

Toggle the state and return new state.

9 LOCAL FUNCTIONS (LFUN) 71

9.18 Functions of /basic/property

Valid properties can be found in the include �les in `/sys/prop/'. Please use the #defined names of

properties and NOT the string names of properties because the strings might change (that's what include

�les are for, after all).

9.18.1 set property

void set_property(key,value)

string key;

mixed value;

Set the property key to value. If value is zero the property is set to one. Use remove property to zero a

property.

9.18.2 query property

mixed query_property(key)

string key;

Query the value of property key. If key is zero a mapping with all properties of the object is returned.

9.18.3 remove property

void remove_property(key)

string key;

Remove the property key.

9.19 Functions of /basic/reinit

9.19.1 reinit

void reinit()

call init() on all livings in this object.

9.20 Functions of /basic/time

All functions of `/basic/time' exist in two version: time * and heart * - the second version takes the return

value of player->query_age(); as an argument.

9.20.1 time val

int *time_val(time)

int time;

Returns an array (f sec, min, hours, days, year, dayofyear, month, weekday, dayofmonth g) converted from

time, which should be a time in seconds. (e.g. "/obj/cron/"->time(), which is the tubmud time).

9.20.2 time long

string time_long(time)

int time;

Returns a string formatted as the output for the player age from the score command. The argument is the

same as to * val.

9.20.3 time short

string time_short(time)

int time;

Returns a string formatted as the output for the player age from the people command. The argument is

the same as to * val.

9 LOCAL FUNCTIONS (LFUN) 72

9.21 Functions of /basic/timedep

9.21.1 set timedep

string *set_timedep(when,what,space)

int *when;

mixed *what;

string *space;

9.21.2 query timedep

mixed query_timedep(space)

string *space;

9.21.3 add timedep

string *add_timedep(when,what,space)

int when;

mixed what;

string *space;

9.21.4 query timedep table

mixed *query_timedep_table(space)

string *space;

9.21.5 set timedep space

void set_timedep_space(space)

string *space;

9.22 Functions of /basic/timedepdesc

Inherit this object if you want time dependant long descriptions. All you have to do is inherit it, include

"/basic/timdep.h", call one of the prede�ned macros set timedep2(), set timdep4() or set timedep8() and

pass an array of long descriptions to set long(). The array size corresponds to the numerical part of the

previously used macro name. You can set multiple time dependencies, either with the provided macros or

by creating new ones:

set_timedep (({ 8 * 3600, 20 * 3600 }), ({ "day","night" }), ({"day2"}));

This creates a depspace named (f"day2"g) which de�nes the time from 8 am to 8 pm as "day" and the

time from 8 pm to 8 am as "night". (It is the prede�ned macro set timedep2(), in fact.)

9.22.1 set timedepdesc

int set_timedepdesc(descriptions,depspace,space)

string *descriptions,*depspace,*space;

9.22.2 add timedepdesc

int add_timedepdesc(key,description,space)

mixed key;

string description,*space;

9.22.3 query timedepdesc

string query timedepdesc(space,depspace)

string *space,*depspace;

9.22.4 query timedepdesc table

string *query_timedepdesc_table(space)

string *space;

9 LOCAL FUNCTIONS (LFUN) 73

9.22.5 set timedepdesc space

void set_timedepdesc_space(space)

string *space;

9.22.6 set long

void set_long(desc,depspace)

string *desc,*depspace;

Sets the long description of the object. If depspace is omitted a default space is choosen, depending on the

size of the array (2, 4 and 8 are allowed as defaults). The default space must have been created before with

one of the prede�ned macros set timedep2(), set timedep4() or set timedep8().

9.23 Functions of /basic/timedepitem

This object provides a similar mechanism for \fakeitems" as /basic/fakeitem. Items de�ned by timedepitem

can have more than one long description. Which description is returned by query long (subject) depends

on the depspace associated with `subject'. `/basic/timedep.h' de�nes three default spaces. All speci�ed

item names may be arrays of strings. `/basic/alias' turns them into aliases for the same description.

9.23.1 set item descriptions

void set_item_descriptions(names,descriptions,when,depspace,space)

mixed *names;

string *descriptions,when,*depspace,*space;

Set descriptions[x] for the item(s) names[x].

9.23.2 set one item description

void set_one_item_description(name,description,when,depspace,space)

mixed name;

string description,when,*depspace,*space;

Set the description of a single item at a speci�ed time.

9.23.3 set one item descriptions

void set_one_item_descriptions(name,descriptions,depspace,space)

mixed name;

string *descriptions,*depspace,*space;

Set all descriptions for a single item. The size of descriptions has to match the size of the depspace

speci�ed by depspace.

9.23.4 id

int id(subject)

string subject;

The usual id function.

9.23.5 query long

string query_long(subject)

string subject;

Query the long description of an item.

9.23.6 query items

mixed *query_items(space,when)

string *space,when;

Query the array of all items.

10 INCLUDE FILES 74

9.23.7 add item

void add_item(name,description,depspace,when)

mixed name,description;

string *depspace,when;

If description is an array of strings its size has to match the size of the depspace speci�ed as the third

argument. If no third argument is provided a default space is selected; existing default spaces are de�ned

in `/basic/timedep.h', they have to be set with the macros set timedep2, set timedep4 or set timedep8

from the same include �le before they can be used. If description is a string and no depspace is given the

item will always be visible, otherwise the item will be visible during the period named when of depspace.

9.23.8 remove item

void remove_item(subject,when,space)

string subject,when,*space;

Remove an item.

9.23.9 set timedepitem space

void set_timedepitem_space(space)

string *space;

10 Include Files

This is not a complete reference of all include �les, missing include �les are either for internal usage, belong

to the /std/ mudlib or are just too mysterious.

10.1 /basic/

10.1.1 action.h

10.1.2 fsm.h

10.1.3 macros.h

BLUEPRINT(ob) the blueprint of object or string ob

CLONED(ob) true if object ob is a cloned object

LOAD(�le) loads file and returns 1 on sucess, 0 on failure

CONTAINS(ob, what) true if object ob contains what, also if what is inside one or more container(s)

inside ob

INSIDE CONTAINS(this object(), this player())

10.1.4 move.h

The return codes of move() in /basic/move (they are the same as the return codes of the efun transfer()):

� MOVE OK (zero)

� MOVE NO ROOM

� MOVE NO DROP

� MOVE BAD SOURCE

� MOVE NO INSERT

� MOVE BAD DEST

� MOVE NO GET

10 INCLUDE FILES 75

10.1.5 timedep.h

There are three pre-de�ned groups of time arrays for time dependent descriptions: TD DAY<n> WHAT

& TD DAY<n> WHEN, where <n> is 2, 4 or 8.

Two phases of the day Four phases of the day

Day Night Dew Day Dawn Night

8 - 20 20 - 8 6 - 7 7 - 18 18 - 19 19 - 6

Eight phases of the day

Midnight Late Night Morning Forenoon Noon Afternoon Evening Night

0 - 1 1 - 5 5 - 8 8 - 12 12 - 13 13 - 18 18 - 20 20 - 24

You can set one of the prede�ned time dependencies with the three macros: set timedep2, set timedep4 &

set timedep8.

10.2 /sys/

10.2.1 ctype.h

The following macros determine if a character 'c' is ...

isalpha(c) ... a letter

isupper(c) ... uppercase

islower(c) ... lowercase

isdigit(c) ... a digit

isspace(c) ... a whitespace

ispunct(c) ... punctuation

isalnum(c) ... a digit or letter

isprint(c) ... printable

toupper(c), tolower(c), tostring(c) transform chars to uppercase chars, lowercase chars and strings.

10.2.2 stdlib.h

10.2.3 time.h

This �le requires you to inherit `/basic/time.c'. It de�nes the arrays WEEKDAYS, MONTHS, SEASONS, all

weekdays, month & seasons by name (e.g. #define DECEMBER 11) and the following macros:

query hour

query weekday

query month

query season

query year

query day of month

query day of year

All these macros call time val; instead of calling several of these macros you can call time val once and

use the macros TV HOUR, TV MONTH, etc. which are indices in the returned array.

10.2.4 timezone.h

The macros localtime() and localdaytime() return the local mud time as a total and as seconds per day.

11 OBJECT PROPERTIES 76

10.2.5 turncoat.h

Provide an easy way to use the 3.0 create() strategy in compatibility mode. This de�nes reset to

turncoat reset. /basic/turncoat, which is inherited by turncoat.h, provides a dummy turncoat reset

function.

11 Object Properties

12 TheMaster Object

12.1 Startup

The master object is the second object loaded after void.c. Everything written with write() at startup

will be printed on stdout.

1. reset() will be called �rst.

2.
ag() will be called once for every argument to the
ag -f supplied to the driver.

3. epilog() will be called.

4. The game will enter multiuser mode, and enable log in.

12.2 Di�erences between COMPAT and NATIVE mode

One thing is di�erent in the �le access permission system in game driver 3.0. The master object can read

and write any �le. That means that all occurences of such manipulations below must be carefully guarded

against calls from elsewhere. Always make a comment at the start of a function that is doing such things,

to make it easy for other to quickly assert security. The master object can of course not access �les above

the mudlib directory.

12.3 Functions of master.c

12.3.1
ag

void flag(str)

string str;

To test a new function xx in object yy, do parse "-fcall yy xx arg" "-fshutdown"

12.3.2 connect

object connect()

This function is called every time a player connects; it returns the player object which is to be used for the

new player. input to() can't be called from here.

12.3.3 verify create wizard

int verify_create_wizard(ob)

object ob;

This function is called for a wizard that has dropped a castle. The argument is the �le name of the object

that called create wizard(). Verify that this object is allowed to do this call.

12 THE MASTER OBJECT 77

12.3.4 get wiz name

mixed get_wiz_name(file)

string file;

Get the owner of a �le. This is called from the game driver, so as to be able to know which wizard should

have the error.

12.3.5 log error

void log_error(file,message)

string file,message;

Write a compile time error message into a log �le. The error occured in the object file, giving the error

message message.

12.3.6 runtime error

void runtime_error(error,program,current_object,line)

string error,program,current_object;

int line;

Runtime errors will be sent to the function runtime error().

12.3.7 save ed setup

int save_ed_setup(wiz,setup)

object wiz;

int setup;

save ed setup() and restore ed setup() are called by the ed to maintain individual options settings.

These functions are located in the master object so that the administrators can decide what strategy they

want to use.

12.3.8 retrieve ed setup

int retrieve_ed_setup(wiz)

object wiz;

See save_ed_setup().

12.3.9 master create wizard

string master_create_wizard(owner,domain,caller)

string owner,domain;

string caller;

Create a home directory and a castle for a new wizard. It is called automatically from create wizard().

We don't use the `domain' info. The create wizard() efun is not really needed any longer, as a call could

be done to this function directly.

This function can create directories and �les in `/players/'. It is guarded from calls from the wrong places.

12.3.10 destruct environment of

void destruct_environment_of(ob)

object ob;

When an object is destructed, this function is called with every item in that room. We get the chance to

save players!

12.3.11 de�ne include dirs

string *define_include_dirs()

De�ne where the `#include' statement is supposed to search for �les. \." will automatically be searched

�rst, followed in order as given below. The path should contain a `searched for.

12 THE MASTER OBJECT 78

12.3.12 query allow shadow

int query_allow_shadow(ob)

object ob;

The master object is asked if it is ok to shadow object ob. Use previous object() to �nd out who is

asking.

12.3.13 parse command *

Default language functions used by parse command() in native mode.

� string *parse command id list()

� string *parse command plural id list()

� string *parse command adjectiv id list()

� string *parse command prepos list()

� string parse command all word()

12.3.14 get ed bu�er save �le name

string get_ed_buffer_save_file_name(file)

string file;

Give a �le name to save the ed bu�er of a player who loses his connection. Argument is the path name

remembered so far by ed.

12.3.15 get simul efun

mixed get_simul_efun()

Give a path to a simul efun �le. Observe that it is a string returned, not an object. But the object has to

be loaded here. Return 0 if this feature isn't wanted.

master::get simul efun() can return an array, �rst item should be the simul efun name, the others names

for �les to call obsolete simul efuns in.

It is a good idea to have a spare simul efun �le. In case of trouble (the original isn't loadable) get simul efun

can load the spare object and return its name.

12.3.16 query player level

int query_player_level(what)

string what;

There are several occasions when the game driver wants to check if a player has permission to speci�c

things.

These types are implemented so far:

"error messages": If the player is allowed to see runtime error messages.

"trace": If the player is allowed to use tracing.

"wizard": Is the player considered at least a "minimal" wizard ?

"error messages": Is the player allowed to get run time error messages ?

12.3.17 valid exec

int valid_exec(name)

string name;

Checks if a certain `program' has the right to use codeexec() name id the name of the `program' that

attempts to use exec() Note that this is di�erent from �le name(), programname is what `function exists'

returns; there is no leading slash in the name. Returns true if exec() is allowed.

12 THE MASTER OBJECT 79

12.3.18 valid write

mixed valid_write(path,eff_user,call_fun,caller)

mixed path;

string eff_user,call_fun;

object caller;

Return the path to be used or deny write access (with return value 0) for the calling function.

call fun may be: save object, write �le, ed start, mkdir, rmdir, write bytes, remove �le, cindent, do rename.

12.3.19 valid read

mixed valid_read(path,eff_user,call_fun,caller)

string path,eff_user,call_fun;

object caller;

Return the path to be used or deny read access (with return value 0) for the calling function.

call fun may be: restore object, ed start, read �le, read bytes, �le size, get dir, tail, print �le,

make path absolute, do rename.

12.3.20 make path absolute

mixed make_path_absolute(path)

string path;

12.3.21 creator �le

mixed creator_file(object_name)

string object_name;

12.3.22 move or destruct

void move_or_destruct(what,to)

object what,to;

An error in this function can be very nasty. Note that unlimited recursion is likely to cause errors when

environments are deeply nested.

12.3.23 valid snoop

int valid_snoop(snooper,snoopee)

object snooper,snoopee;

Returns 1 if snooper is allowed to snoop snoopee.

12.3.24 valid query snoop

int valid_query_snoop(wiz);

object wiz;

Return 1 if wiz is allowed to �nd out who's snooping who.

12.3.25 prepare destruct

mixed prepare_destruct(ob)

object ob;

12 THE MASTER OBJECT 80

12.3.26 privilege violation

int privilege_violation(cause,object,program)

string cause;

mixed object,program;

privilege violation is called when objects try to do illegal things, or �les being compiled request a

privileged efun.

A call to one of the following functions is a privilege violation: wizlist info, set extra wizinfo,

get extra wizinfo, set extra wizinfo size, set this object, send imp.

If what is \nomask simul efun" and the master denies access for who != SIMUL EFUN simul efuns can't be

circumvented by efun:: outside the simul efun �le.

Return values:

� 1: The caller/�le is allowed to use the privilege.

� 0: The caller was probably misleaded; try to �x the error.

� -1: A real privilege violation. Handle it as error.

12.3.27 reactivate destructed master

void reactivate_destructed_master(flag)

int flag;

If reloading of the master fails, the old master will be reactivated. The function

void reactivate destructed master(int flag) will then be called in it, with
ag indicating if the old

variable values are preserved.

12.3.28 external master reload

void external_master_reload()

When the master is too buggy to be updated from inside the game, it can be forced to update from outside

by sending SIGUSR1. The function external master reload() will then be called in the new master. If an

object is blocking the driver with a time consuming evaluation, you might need to send the signal several

times, it will increment the eval cost by MAX COST/8.

12.3.29 slow shut down

void slow_shut_down(minutes)

int minutes;

This function is called when memory is getting low. The parameter is the suggested time until shutdown,

the time for Armageddon to trans players to the shop etc...

12.3.30 heart beat error

int heart_beat_error(object,error,program,current_object,line)

string object,error,program,current_object;

int line;

This function is called when an error in current object has stopped the heart beat in object. Return

non-zero if heartbeat is to be restarted.

12.3.31 receive imp

void receive_imp(foreign_host,message)

The mud has received message from foreign host.

13 SKILLS 81

13 Skills

13.1 Implementing Skills

Oh yes, if you have no brain object, go to /room/vill green, there you will get one. The brain object

facilitates the init() function to add action to the player for the skill verbs. More than that, the brain holds

the skill scores for the player, is autoloading and saves the skill scores on every save (including autosave).

I'll explain the mechanism of the brain. The explanation is sort of the reverse of the
ow control in the

actual verb execution.

Every object which you want to be a�ected by a certain skill (or more than one) de�nes a function:

int apply action (string skill, int level, mixed arg)

which is called when the skill is used by a player on the speci�c object. `skill' is identifying the skill which

is used by the player for the action. The identifyer is unique for the skill and is de�ned when the skill is

�rst added to the brain logic. The apply_action of the object in question decides whether it is a�ected by

the skill in a way similar to the normal add actions.

The success should be depend on the `skill' and `level' parameter. Of course, if the `skill' does not match,

the attempt should fail. Depending on how complicated the intended action is, the success should depend

on the level, which is a percentage relative to the possible skill maximum.

If there is no success in using the skill, the object must return 0 to enable others to be tried. If the value

returned is 1, the player succeeded and the object already performed the nessecary action. This is also true

for return values greater than 1, but the use of the skill is rewarded with value-1 added to the current skill

score in the skill path.

The skill identi�ers may be listed with your default skill `action', which is only given to wizards. `action

list' gives a list of skill identi�ers and the objects holding the logic and their skill path. If there is more than

one skill with a similar verb, the identi�er is split into a top-level verb and sub-speci�er. For apply action,

these two parts are concatenated, thus `use' `skill' yields `use skill'. Since the �rst part may not contain

blanks, this method is unambiguous.

The apply action is called by an object holding the skill parsing and score adding logic. This object may

be global or created by a wizard. Never create a skill just for fun, since the skill structure is changed when

a player uses it and then saved to the individual player skill save �les. A skill logic may be registered to

the brain by `action add'. Please keep in mind, that this registration only a�ects the players brains loaded

after then. This means, that the currently active players will not notice the change until they log out and

back in again.

The skill logic object is called by the players brain when the appropiate verb is used. It is not cloned

neither present to the player. I will explain the details of creating this object in a di�erent documentation.

The global skills may serve as an example, but most of them don't really add to the players skill score.

Every skill logic object de�nes a function query info to return a short explanation of the purpose.

The object /obj/actions is a sort of administration object, which knows the currently registered skill logic

objects. It is queried by the brain for the list of verbs and the corresponding skill logic object �le names.

See also the FILES listing at the end of this document.

The magic skills are a bit special. Since spells of the same type are more likely to be related closely than

defensive/o�ensivene spells of a very di�erent type, the spell type is the root for spells of similar type but

di�erent character. The magic skills are quite deep since they are likely to be very specialized. We don't

want the generic skills a�ect the magic skills very much.

13 SKILLS 82

13.2 Skills in the sunrise mudlib

Children in the skill-tree add to the value of their parents, so that the value of the root (called skill) always

represents the sum of all skills (and as such experience). In calculating the percentage-values of a skill, it's

parents are taken in account with weight decreasing as distance increases.

Example:

The short sword skill is calculated from the

absolute value of short sword, 50% of sword,

25% of sharp weapons, 12.5% of offensive and

6.25 % of skill in the current tree. From

this absolute value a percentage is calculated

with a curve where 5000 points are 50% and

500000 are 100%.

When creating new skills, try to put them pretty far down in the skill-tree as they in
uence other sibling-

skills less thet way.

A skill is an object which is cloned once at the start of the mud and that players hold references to via

Marion's brain. For an example of a programmed skill, look at basic/action/miscellaneous/climb.c You

should put new basic skills in directories there (create them if needed). Weapon-Skills are de�ned in the

weapon, look at /w/ardanna/weapons for two cloneable examples (quite trivial ones).

An object which allows a skill to be used on it should de�ne a procedure \int apply action(string type,

int level)" It gets the type and level(in percent) of the skill which the player tries to use on the object as

parametres and should react accordingly. It returns success.

13 SKILLS 83

13.3 An Example Skill

Example (from /outside/sunrise/w/ardanna/castle.c, which is a cactus):

int apply_action(string type, int level){

switch(type){

case "climb":

return climb_me(level);

break;

/* insert other skills here, like

case "fireball":

return fry_cactus(level);

break;

case "biology":

write cactus_info;

return 1;

*/

}

return 0;

}

The cactus then has a function called climb me which is called when somebody tries to climb it.

int climb_me(int level){

if(level<50){

write("You are hurt badly by the sharp cactus needles!\n");

....

this_player()->add_hp(-20);

return 1;

}

....

}

Experience is given by the climb-skill when sucess is returned. If you want to add some skillpoints

on your own (which you shouldn't do until you are sure of what you are doing) use the macro's from

/basic/action/miscellaneous/skills.h

14 DOMAINS 84

13.4 The Skill Tree

Suggested outline of general skill tree:

skill

miscellaneous

curiosity

climb

magic

detect

defensive

alignment

magic

comprehend

neutral

readmagic

locateobject

affect

defensive

holdperson

neutral

light

heal

offensive

levitate

create

neutral

fire

monster

offensive

fireball

curse

defensive

remove

offensive

turn

disspell

initiate

FILES

/obj/actions central skill logic administration

/obj/saver helper object to save players skill scores

/global/player/brain the brain every player gets to de�ne the verbs

/basic/action generic skill logic functions

/global/actions/add_action skill logic doing skill logic administration

/global/actions/show_skill skill logic to display skill score

/save/action/[a-z]/.o save �les for skill scores

14 Domains

Technically spoken, domains are directories in the /domains part of the �le system. They are used for

multi-wizard projects by allowing more than one wizard to write to them. Every domain is run by a so

called domain lord who is responsible for the area. There is no restriction on the number of domains you

may join or the number of wizards that are members of a single domain.

14 DOMAINS 85

14.1 Rules for Domains

If you have to change code you didn't write yourself follow these rules:

1. Comment all changes with a line containing reason of change, your name and the date

2. Send a mail to the person whose code you changed, explaining the change.

3. If the change is likely to a�ect other parts of the domain, post it on the domain board.

4. Never delete code another person wrote, use #ifdef 0 and #endif to disable it.

14.2 How to create a new domain

Ask a wizard with level � 25 to create a new domain for you, if you need one. If he/she thinks your request

is justi�ed, he/she will ask you for the name of the domainlord and install it.

14.3 Domain Management

The domainlord has the exclusive right to grant other wizards access to the domain. He/She may also

revoke once granted permissions and deny other wizards access to the domain. There is no guideline,

though, how building within the domain is organized. This is left to the members of the domain. Any

domain member may leave the domain at any time (details described below).

14.4 Domain Commands

Every wizard has the builtin command `domains' to list the domains he/she is a member of. More

functionality is provided by additional commands in /room/domain room. Type

'list domains' to list the domains in existence.

'list member of <domain>' to list the members of domain <domain>.

'leave <domain>' to leave domain <domain>.

Domain lords may grant and deny access to their domain by using the commands

'grant <wizard> access to <domain>' and

'deny <wizard> access to <domain>'.

Elders and wizards of higher level may use these commands for any domain. They may also create and

destroy domains by typing:

`create <domain> for <wizard>' to create a domain called <domain> with <wizard> as domain lord. It

will allocate a directory called /domains/<domain> and create a castle �le /domains/<domain>/castle.c.

The castle.c �le will be loaded at every reboot. If there is already a directory /domains/<domain>, only

internal information will be updated. This might be useful after a crash, if the information got corrupted

but the �le still exist.

`destroy <domain>' will destroy the given domain by revoking write access for all members of the domain

and then removing the domain from the internal list. Removing the �les and updating /room/init �le will

need additional attention.

`promote <wizard> to lord of <domain>' will replace the domain lord by <wizard>. Please note that

there may be only one domain lord per domain at any time.

14.5 Technical Information

The domain information is held in several arrays in /save/domains.o Every transaction is written to

/log/DOMAINS in order to be able to restore domains after a crash. Domains objects have the

domain name as their creator with the �rst letter capitalized. Compilation errors are written to

/log/<domainname> with the �rst letter of the domainname capitalized.

15 THE LPC IMPLEMENTATION 86

15 The LPC Implementation

The language is de�ned by three �les. `lex.c' de�nes the lexical elemements and takes care of preprocessor

directives. `func spec' de�nes the stackmachine codes and function prototypes. `lang.y' de�nes the

grammar.

15.1 Moving Objects

When the stackmachine comes across a F MOVE OBJECT instruction, after having obtained object point-

ers for the destination, it calls the move object routine in simulate.c. The main function of this routine

is to transfer an object to a di�erent environment, hereby making sure that the sentences, making up the

command de�nitions are updated correctly. (Sentences are structures that contain the player's commands,

which associate a command string, with an object and function.) There are also di�erences in the execution

of a F MOVE OBJECT instruction depending on if the driver has been compiled with COMPAT MODE

de�ned or not, I shall explain what happens in the non-compat mode.

The �rst part involves performing some checks to see if it legal to move the object in the �rst place; if

the object to be moved `item' is the current object, if the object has been \approved" and if the object is

shadowing another object. The next step is to update the light level in the object's new environment.

If the item has an environment (not true if it has been freshly loaded or cloned), we need to remove its

sentences that have been de�ned by its environment, or objects in its environment, not forgetting those

that exist in objects in its environment de�ned by the item itself. We start by checking to see if the object

has had commands enabled (that is able to perform commands, and thereby having a list of command

sentences). If this is so, then we remove all sentences de�ned by item in its environment. Depending of

whether item's environment has commands enabled, the sentences de�ned in the environment, by item need

to be removed too. The next step is to scan through the objects in item's environment, removing sentences

de�ned by these objects from their and our sentence lists.

The next part actually \moves" the item into its new environment by adjusting the object's and destina-

tion's next inventory and environment pointers

The last part of the move requires the local function init() to be called in various objects. (The init

function is mainly used to set up commands). This is rather tricky, and I have found that novices tend to

get confused as to when exactly init gets called in their object, and with which object as this player().

Naturally the order in which init gets called in the objects is important as command overlaying is a valuable

feature.

Init is called in objects according to the following scheme: If an object item, with commands enabled

is moved to a destination `dest' then all objects in dest's inventory will have init called. In addition,

regardless of whether an object has commands enabled, its own init function will be called once for each

living object in its new environment, including the environment itself, should it be living.

Furthermore, during these calls, the value of the command giver is set to the living object for which it is

called. (The value of command giver is obtained by a call to efun::this player().)

Things in the COMPAT MODE run similarly. The main di�erences being that it is legal for an object to

move another object and that the local function exit() is called in the object's environment.

15.2 Single-Threadedness

The execution mechanism of the game driver is single threaded, meaning that there is no parallel execution

of lpc code (or any other code for that matter). The driver takes each input event at a time and executes

until that thread has �nished (the routine called by the add action does a `return', or a run time error

crops up. This means that every time the driver is executing one of your (or anybody else's) commands, it

cannot execute anything else. This means that if I write some code which does not do a return (for (;;) ;

for example) the driver will block and nothing else will happen in the whole mud. In order to prevent this

happening, (a reboot would be required to alleviate the problem) the driver does some run time accounting

of the current execution thread, and terminates the execution of the current thread if at some point it

15 THE LPC IMPLEMENTATION 87

becomes too costly, with the error eval cost too big. The efun command can be used to see how costly a

certain command was in terms of execution time.

There are two main ways to get time delays. Firstly use efun::call out if you want to have a func-

tion in this object() called after a certain space of time. Or de�ne an lfun heart beat, and use the

efun::set heart beat(1) to arrange for the driver to call the function every two seconds. However, it must be

said that having a heart beat running for an object is very costly in terms of driver resources, so do NOT

use the heart beat mechanism for polling etc.. I strongly advise you to turn o� an object's heart beat when

you no longer require it. You can do this with the use of the efun set heart beat(0).

In 2.4.5 mud drivers, the call out mechanism had a slightly di�erent semantic. It used to be the case that

this player() was not de�ned in routines called by the call out mechanism. In my opinion this was sensible,

but ba�ed many wizards who used efuns dependant on this player(), efun::write for example). However,

now when a efun::call out() is called, the values of this player() (and maybe even this interactive() as well)

are saved, and restored when the function is called. However, this also means that the saved value of

this player() might no longer exist, and strange things indeed may happen.

15.3 The Virtual Stack Machine

This section describes how a virtual stack machine has been de�ned to execute compiled lpc code. There

are two stacks:

15.3.1 Control stack and value stack

The control stack contains return addresses, frame pointer etc. The stack of values is used for evaluation,

local variables and arguments. Note that arguments are treated as local variables. Every element on the

value stack will have the format \struct svalue", as de�ned in interpret.h. The value stack is stored in an

array, with limited size. The �rst push operation will store a value into element 0. Access of arguments

and local variables are supposed to be fast, by simply indexing in the value stack using the frame pointer

as o�set.

Start of stack

Frame pointer

-

?

Argument number 0

Argument number 1

.

.

.

Local variable number 0

Local variable number 1

.

.

.

Temporary stack values

.

.

.

.

.

.

Calling local functions All arguments are evaluated and pushed to the value stack. The last argument

is the last pushed. It is important that the called function gets exactly as many arguments as it wants.

The number of arguments will be stored in the control stack, so that the return instruction not needs to

know it explicitely.

15 THE LPC IMPLEMENTATION 88

Instruction format:

b0 b1 b2 b3

b0 = F_CALL_FUNCTION_BY_ADDRESS

b1, b2 = The number of the function to be called.

b3 = Number of arguments sent.

The F FUNCTION instruction will also initiate the frame pointer to point to the �rst argument.

The number of arguments are stored in the `struct function' which is found using the number of the function

and indexing in ob->prog->functions[]; The number of arguments will be adjusted to �t the called function.

This is done by either pushing zeroes, or poping excessive arguments. F CALL FUNCTION BY ADDRESS

will also initiate local variables, by pusing a 0 for each of them.

The called function must ensure that exactly one value remains on the stack when returning. The caller is

responsible of deallocating the returned value.

When a function returns, it will use the instruction F RETURN, which will deallocate all arguments and

local variables, and only let the top of stack entry remain. The number of arguments and local variables

are stored in the control stack, so that the evaluator knows hoh much to deallocate.

If
ag `extern call' is set, then the evaluator should return. Otherwise, the evaluator will continue to

execute the instruction at the returned address.

Format:

b0

b0 = F_RETURN.

Calling prede�ned functions Arguments are pushed to the stack. A value is always returned (on the

stack).

Instruction format:

b1

b1 = The F_ code of the called function.

or

F_ESCAPE b1 ; b1 = The F_ code of the called function, minus 256

If a variable number of arguments are allowed, then an extra byte will follow the instruction, that states

number of actual arguments.

The execution unit will parse number of arguments immediately, regardless of which instruction it is when

it is stated that a variable number of arguments are allowed. It will also check soem of the types of the

arguments immediately, if it is possible. But never more than the types of the �rst two arguments.

F SSCANF The function sscanf is special, in that arguments are passed by reference. This is done with

a new type, T LVALUE. The compiler will recognize sscanf() as a special function, pass the value of the

two �rst arguments as normal rvalues and pass the rest as lvalues. The total number of arguments is given

as a one byte code supplied to the F SSCANF instruction.

15 THE LPC IMPLEMENTATION 89

F CALL OTHER This command takes one argument, a byte which gives the number of arguments.

b1, b2

b1 = F_CALL_OTHER, b2 = number of arguments.

F AGGREGATE This command takes one argument, the size of the array. The elements of the array

are picked from the top of stack.

b1, b2, b3

b1 = F_AGGREGATE, (b2,b3) = Size of the array (max 0xffff).

F CATCH The compiler constructs a call to F CATCH before the code to evaluate the argument of

F CATCH. After the code, a call to F END CATCH is made. Thus, it will look like a function call on the

control stack.

F_CATCH will when executed do setjmp() and call eval_instruction()

recursively. That means that a new frame has to be set up.

F_THROW will do a longjmp().

format:

F_THROW, b1, b2, (instructions...), F_RETURN

Where b1,b2 is the address of the instruction after the return instruction.

F RETURN Will deallocate the current frame, and restore the previous. If the
ag extern call is set,

then a return from eval instruction() will be done.

15.4 How to Add Your Own Functions

The functions that returns the void value don't have to return anything (as in earlier implementations,

where void functions returned their �rst argument) If you have no value to return, it is a good idea to set

the function return type to void, so there needn't be a pop of the unused value.

Many `stack instructions' exists only to be called by the compiler. Like `pop', which obviously must not

return a value on the stack. But, all those instructions are only generated explicitely by the compiler, which

knows what it does.

If you want to add a new function of you own, you will have to change:

func spec: add a prototype in the 1-byte-codes, the latter for 2-byte-codes.

Functions that only allow a constant number of arguments are best, as the compiler always knows how

many arguments there are, and won't generated code information about that.

interpret.c: add a case statement in eval instruction(). If you have a prototype in the for a prototype in

the You will have to check the types of arguments. If di�erent types are allowed, then they will have to be

checked. Also, if the number of arguments are constant, then you can assume they are correct. Otherwise,

use the macro GET NUM ARG so the variable num var will tell you the actual number of arguments.

